VISUAL QUICKSTART GUIDE

Get up and running in no time!

PHP
for the Web

Fourth Edition

LARRY ULLMAN

@ LEARN THE QUICK AND EASY WAY!

VISUAL QUICKSTART GUIDE

PHP for
the Web

Fourth Edition

LARRY ULLMAN

Visual QuickStart Guide
PHP for the Web, Fourth Edition
Larry Ullman

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.

Copyright © 2011 by Larry Uliman

Editor: Rebecca Gulick

Copyeditor: Liz Welch

Technical Reviewer: Jay Blanchard

Proofreader: Bob Campbell

Production Coordinator: Myrna Vladic

Compositor: Debbie Roberti

Indexer: Valerie Haynes-Perry

Cover Design: RHDG / Riezebos Holzbaur Design Group, Peachpit Press
Interior Design: Peachpit Press

Logo Design: MINE™ www.minesf.com

Notice of Rights

All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks

Visual QuickStart Guide is a registered trademark of Peachpit Press, a division of Pearson Education. Macintosh
and Mac OS X are registered trademarks of Apple Computer, Inc. Microsoft and Windows are registered
trademarks of Microsoft Corp. Other product names used in this book may be trademarks of their own
respective owners. Images of Web sites in this book are copyrighted by the original holders and are used with
their kind permission. This book is not officially endorsed by nor affiliated with any of the above companies.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,

the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with no
intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey
endorsement or other affiliation with this book.

ISBN-13: 978-0-321-73345-0
ISBN-10: 0-321-73345-2

987654321

Printed and bound in the United States of America

www.peachpit.com
www.minesf.com

Dedication

For Jessica, Gina, and Rich, with gratitude for all of their love
and support.

Special Thanks to:

Many, many thanks to everyone at Peachpit Press for their assistance
and hard work, especially:

The best darn editor in the world, Rebecca Gulick. Thanks for, well, just
about everything.

Liz Welch, for her attention to detail.

Jay Blanchard, for the technical review and for his uncanny ability to
predict what I'm going to say next.

Bob Campbell, for the sharp proofreading eye.

Deb Roberti and Myrna Vladic, who take a bunch of disparate stuff and
turn it into a book. Valerie Haynes-Perry for the excellent indexing.

Everyone at Peachpit for doing what'’s required to create, publish,
distribute, market, sell, and support these books.

My sincerest thanks to the readers of the other editions of this book and
my other books. Thanks for your feedback and support and for keeping
me in business.

Rasmus Lerdorf (who got the PHP ball rolling), the people at PHP.net
and Zend.com, those who frequent the various newsgroups and mailing
lists, and the greater PHP and open source communities for developing,
improving upon, and supporting such wonderfully useful technology.

Karnesha, for entertaining the kids so that | can get some work done,
even if I'd rather not.

Zoe and Sam, for continuing to be the kid epitome of awesomeness.

Jessica, for doing everything you do and everything you can. And for
making all this mess work as well as it can, all things considered.

Table of Contents

Introduction ix
Chapter 1 Getting Started withPHP. 1
BasicHTML Syntax. 2
BasicPHPSyntax 7
UsingFTP 10
Testing Your Script 12
Sending Texttothe Browser. 15
Usingthe PHP Manual 18
Sending HTMLtotheBrowser. 22
Adding Commentsto Scripts. 25
Basic DebuggingSteps. 28
Reviewand Pursue 30
Chapter2 Variables 31
What Are Variables?. L. 32
VariableSyntax, 36
TypesofVariables. 38
Variable Values. o oL 41
Understanding QuotationMarks 45
Reviewand Pursue 48
Chapter3 HTMLFormsandPHP 49
Creatinga SimpleForm 50
Choosinga FormMethod. 54
Receiving Form DatainPHP 57
Displaying Errors. 61
ErrorReporting. 64
Manually Sending DatatoaPage 67
ReviewandPursue 72

Table of Contents v

Chapter 4

Chapter 5

Chapter 6

Chapter 7

UsingNumbers 73
Creatingthe Form. 74
Performing Arithmetic. 77
Formatting Numbers 81
Understanding Precedence 84
Incrementing and Decrementing a Number 86
Creating Random Numbers 88
Reviewand Pursue 90
Using Strings. 91
Creatingthe HTMLForm 92
Concatenating Strings 95
Handling Newlines. 98
HTMLandPHP 100
Encoding and Decoding Strings 103
Finding Substrings. L. 107
Replacing Partsofa String m
ReviewandPursue 14
Control Structures. 115
Creatingthe HTMLForm 16
TheifConditional 19
Validation Functions 122
Usingelse. e 126
MoreOperators 129
Usingelseif. 138
The Switch Conditional 142
TheforLoop, 146
Reviewand Pursue L. 150
Using Arrays 151
Whatlsan Array? 152
CreatinganArray e 154
Adding ltemstoanArray 158
Accessing Array Elementso L. 161
Creating Multidimensional Arrays 164
Sorting Arrays. 168
Transforming Between Strings and Arrays 172
Creating an Array fromaForm. 176
ReviewandPursue oL 182

vi

Table of Contents

Chapter 8 Creating Web Applications. 183

Creating Templates. 184
Using External Files., 192
UsingConstants. 197
Working with the Dateand Time. 201
Handling HTML Forms with PHP, Revisited. 204
Making Forms Sticky L. 210
SendingEmail 217
Output Buffering. 222
Manipulating HTTPHeaders. 225
Reviewand Pursue 230
Chapter9 Cookiesand Sessions. 231
What Are Cookies? 232
CreatingCookies 234
Reading from Cookies 239
Adding Parameterstoa Cookie 242
DeletingaCookie. 245
What Are Sessions?. 248
CreatingaSession 249
Accessing Session Variables. 252
DeletingaSession 254
Reviewand Pursue 256
Chapter 10 Creating Functions 257
Creating and Using Simple Functions. 258
Creating and Calling Functions That
Take Arguments. 265
Setting Default ArgumentValues 271
Creating and Using Functions That Return a Value. . . . 274
Understanding Variable Scope 279
Reviewand Pursue 286
Chapter 11 Files and Directories 287
File Permissions 288
WritingtoFiles. 293
LockingFiles 301
Reading fromFiles. 304
Handling FileUploads 307
Navigating Directories 315
Creating Directories. 320
Reading Files Incrementally 327
Reviewand Pursue 332

Table of Contents vii

Chapter 12

Chapter 13

Appendix A

Appendix B

Intro to Databases 333
IntroductiontoSQL 334
ConnectingtoMySQL. 336
MySQL ErrorHandling 340
Creating and Selecting a Database 343
CreatingaTable 347
Inserting Data into a Database. 352
SecuringQueryData oL 358
Retrieving Data from a Database 361
Deleting Dataina Database 366
Updating Datain a Database. 372
Reviewand Pursue 378
Putting It All Together 379
GettingStarted oo 380
Connectingtothe Database 382
Writing the User-Defined Function 383
Creatingthe Template 385
LogginglIn L 388
LoggingOQut 392
AddingQuotes. L L oo 393
ListingQuotes L. 397
EditingQuotes. L Lo 400
DeletingQuotes. L. 406
Creatingthe HomePage 410
ReviewandPursue L. 414
Installation and Configuration 415
Resources and Next Steps 437
Index. 447

viii

Table of Contents

Introduction

When | began the first edition of this book
in 2000, PHP was a little-known open
source project. It was adored by technical
people in the know but not yet recognized
as the popular choice for Web development
that it is today. When | taught myself PHP,
very little documentation was available on
the language—and that was my motivation
for writing this book in the first place.

Today things are different. The Internet
has gone through a boom and a bust and
has righted itself. Furthermore, PHP is now
the reigning king of dynamic Web design
tools and has expanded somewhat beyond
the realm of just Web development. But
despite PHP’s popularity and the increase
in available documentation, sample code,
and examples, a good book discussing the
language is still relevant. Although PHP

is in the midst of its fifth major release,

a book such as this—which teaches the
language in simple but practical terms—
can still be your best guide in learning the
information you need to know.

This book will teach you PHP, providing
both a solid understanding of the
fundamentals and a sense of where to look
for more advanced information. Although

it isn’t a comprehensive programming
reference, through demonstrations and
real-world examples, this book provides
the knowledge you need to begin building
dynamic Web sites and Web applications
using PHP.

What Is PHP?

PHP originally stood for Personal Home
Page. It was created in 1994 by Rasmus
Lerdorf to track the visitors to his online
résumé. As its usefulness and capabilities
grew (and as it began to be utilized in

more professional situations), PHP came to
mean PHP: Hypertext Preprocessor. (The
definition basically means that PHP handles
data before it becomes HTML—which
stands for Hypertext Markup Language.)

Introduction ix

According to the official PHP Web site,
found at www.php.net @, PHP is a
“widely-used general-purpose scripting
language that is especially suited for Web
development and can be embedded into
HTML.” I'll explain the two key parts of this
definition in more detail.

To say that PHP can be embedded into
HTML means that PHP code can be written
within your HTML code—HTML being the
code with which all Web pages are built.
Therefore, programming with PHP starts
off as only slightly more complicated than
hand-coding HTML.

Also, PHP is a scripting language, as
opposed to a compiled language.

This means that PHP is designed to do
something only after an event occurs—for
example, when a user submits a form or
goes to a URL (Uniform Resource Locator—
the technical term for a Web address).
Another popular example of a scripting
language is JavaScript, which commonly
handles events that occur within the Web
browser. These two languages can also

be described as interpreted, because the
code must be run through an executable,
such as the PHP module or the browser’s
JavaScript component. Conversely,
compiled languages such as C and C++ can
be used to write stand-alone applications
that can act independent of any event.

e e

o As of this writing, this is the appearance of the
official PHP Web site, located at www.php.net.
Naturally, this should be the first place you look to
address most of your PHP questions and curiosities.

x Introduction

www.php.net
www.php.net

S| [e Fa—

0 This is the home page of Zend, creators of the
programming at the heart of PHP. The site contains
useful software as well as a code gallery and well-
written tutorials.

What PHP Is Not

The thing about PHP that confuses most
new learners is what PHP can’t do.
Although you can use the language for an
amazing array of tasks, its main limitation
is that PHP cannot be used for client-side
features found in some Web sites.

Using a client-side technology like
JavaScript, you can create a new
browser window, add mouseovers,
make pop-up alerts, resize the browser
window, find out the screen size on

the user’s machine, and dynamically
generate and alter forms. None of these
tasks can be accomplished using PHP
(because PHP is server-side, whereas
those are client-side issues). But, you can
use PHP to create JavaScript, just as you
can use PHP to create HTML.

When it comes time to develop your own
PHP projects, remember that you can
only use PHP to send information (HTML
and such) to the Web browser. You can’t
do anything else within the Web browser
until another request from the server has
been made (a form has been submitted
or a link has been clicked).

You should also understand that PHP is a
server-side technology. This refers to the
fact that everything PHP does occurs on
the server (as opposed to on the client,
which is the computer being used by the
person viewing the Web site). A server

is just a computer set up to provide the
pages you see when you go to a Web
address with your browser (for example,
Firefox, Microsoft Internet Explorer, or
Safari). I'll discuss this process in more
detail later (see “How PHP Works”).

Finally, PHP is cross-platform, meaning that
it can be used on machines running Unix,
Windows, Macintosh, and other operating
systems. Again, we’re talking about the
server’s operating system, not the client’s.
Not only can PHP run on almost any
operating system, but, unlike many other
programming languages, it enables you

to switch your work from one platform to
another with few or no modifications.

At the time this book was written, PHP

was simultaneously in versions 5.3.5 and
5.2.17. (There are slight differences between
versions 5.3 and 5.2, so 5.2 continues to be
supported for a while.) Although this book
was written using a stable version of PHP 5.3,
all of the code is backward compatible, at
least to PHP version 5.x, if notto 4.x. In a
couple of situations where a feature requires
a more current version of PHP, or where
older versions might have slight variations,

a note in a sidebar or a tip will indicate how
you can adjust the code accordingly.

More information can be found at PHP.net
and www.zend.com, the minds behind the
core of PHP @.

Introduction xi

www.zend.com

Why Use PHP?

Put simply, PHP is better, faster, and easier
to learn than the alternatives. All Web
sites must begin with just HTML, and you
can create an entire site using a number
of static HTML pages. But basic HTML is
a limited approach that does not allow
for flexibility or responsiveness. Visitors
accessing HTML-only sites see simple
pages with no level of customization or
dynamic behavior. With PHP, you can
create exciting and original pages based
on whatever factors you want to consider.
PHP can also interact with databases and
files, handle email, and do many other
things that HTML alone cannot.

Webmasters learned a long time ago
that HTML alone won’t produce enticing

and lasting Web sites. Toward this end,
server-side technologies such as PHP have
become the norm. These technologies
allow Web page designers to create

Web applications that are dynamically
generated, taking into account whichever
elements the programmer desires. Often
database-driven, these advanced sites can
be updated and maintained more readily
than static HTML pages.

When it comes to choosing a server-side
technology, the primary alternatives to PHP
are CGl scripts (Common Gateway Interface,
commonly, but not necessarily written

in Perl), ASP.NET (Active Server Pages),
Adobe’s ColdFusion, JSP (JavaServer
Pages), and Ruby on Rails. And although
there are some server-side JavaScript

tools now available, JavaScript isn’t truly

an alternative to PHP (or vice versa).

wikechs com,

Go- =

G Favorkes WY U Tatistics and Markel Share of Server-gide Pro...

W3Techs

Lomputers & 11 Deqrees

Fill Dut Survey - Win $5000 provided by =

Larn A Computer Saence or 1T Cegree

Win Up Ta §5.000 For Your Cpinien!

Contont Managemont
Soerver-side Languages
Client-side Languages
Jawvascript Libraries
Markup Languagos
Character Encodings
web Servers
Cperating Systems
Traffic Analysic Tools
Advertizing Networks
Top Level Domains

languages for websites

Mo ter risad the diagram:

programming language we know.

@nling, Free Infarmation! Take Qur Survey & Eam Cash Prizes QU-Juccess
Web Technology Surveys <] s by Google
Home Technologies Sites Quality Users Blog Forum FAQ Search
. Technologies = Server-side Languages
Technologies 3
echnologles Technology Briel

Usage of server-side pragramming

This. diageam shows the prrcontages of websitos using various
server-side prograrmrang languages. See
explanations on the methodologies used in the surveys.

PHP 15 used by 75.5% of all the websites whose server-side

Server-side Programming
Lanquagns

A programmming language dehnes
the computer instructions which
are used to write programs that
perform some Lask, ¢g. Composing
a web page.

I waryiew for

Internet usane tracking

<

Content Languages PHP 75.5% Google Analytics Just Got Mone
Powerful & Easier Ta Use.
Trends ASP.NET | :3.2% www.google. com/analytics
. Java M 3E%
Historical Trend coldFusion | 1.3% Seientific Cormputing Emphasis.
- SeiPy, NumPy and Traits.
1 wunarthught cormtraining)
Market perd 11.1%
Tap Site Usage Ruby 10.5% Easy Money At Home - Try It
Market Pasition Python |0.3% Now! Take Surveys and Ger Paid
provenrron o G ’
Pereantages of wehsites Using various server-side programming surveyMoneyMachines. com
Breakdown languages [<]
Note: 3 wabsile may wse more than one server-side programmning
Ranking languagi: ~

o The Web Technology Surveys site says that PHP is running on 75% of all Web sites
(http://w3techs.com/technologies/overview/programming_language/all).

X

Introduction

http://w3techs.com/technologies/overview/programming_language/all

So the question is, why should a Web

designer use PHP instead of CGI, ASP.NET,
JSP, or whatever to make a dynamic Web site?

PHP is much easier to learn and use.
People—perhaps like you—without any
formal programming training can write
PHP scripts with ease after reading
this one book. In comparison, ASP.NET
requires an understanding of VBScript,
C#, or another language; and CGlI
requires Perl (or C). These are more

complex languages and are much more

difficult to learn.

PHP was written specifically for
dynamic Web page creation. Perl (and
VBScript and Java and Ruby) were not,
and this fact suggests that, by its very
intent, PHP can do certain tasks faster
and more easily than the alternatives.
I'd like to make it clear, however, that
although I'm suggesting PHP is better
for certain things (specifically those it

was created to do), PHP isn’t a “better”

programming language than Java or
Perl—they can do things PHP can'’t.

m PHP is both free and cross-platform.
Therefore, you can learn and use PHP
on nearly any computer and at no cost.
Furthermore, its open source nature
means that PHP’s users are driving its
development, not some corporate entity.

m PHP is the most popular tool available
for developing dynamic Web sites. As

of this writing, PHP is in use on over

75% of all Web sites @ and is the fourth
most popular programming language
overall @. Many of the biggest Web
sites—Yahoo!, Wikipedia, and Facebook,
just to name three—and content
management tools, such as WordPress,
Drupal, Moodle, and Joomla, use PHP.
By learning this one language, you’ll
provide yourself with either a usable

hobby or a lucrative skill.

‘r;:;::n' ‘l:;:;t;:r:' Delta in Fosmion Frogramming Language ‘EZ:I;‘::“S" Jalrg‘“] Status
1 1 Java 17.773% | +020% | A
2 2 c 15822% | -039% | A
5 4 t Crr 5783% | -093% | A
4 3 1 | PHP 7835% | -224% | &
5 ‘ 1t Python Habaw | +1d1m | A
B 6 ot 6.226% | +0.46% | A
7 5 [1] tvisuah Basic 5.867% [-1.49% | A
u 12 1ttt Objectve-C A% | +1E3w | oA
b 8 1 Perl F857% | -nT1% | A
10 10 Ruby 1.784% | -n69% | &
1 u [1] Javasicrpt 1ouus | 1% | oA

0 The Tiobe Index (http://www.tiobe.com/index.php/content/paperinfo/

tpci/index.html) uses a combination of factors to rank the popularity of

programming languages.

Introduction xiii

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

How PHP Works

PHP is a server-side language, which
means the code you write in PHP resides
on a host computer that serves Web pages
to Web browsers. When you go to a Web
site (www.LarryUllman.com, for example),
your Internet service provider (ISP) directs
your request to the server that holds the
www.LarryUliman.com information. That
server reads the PHP code and processes
it according to its scripted directions. In this
example, the PHP code tells the server to
send the appropriate Web page data to
your browser in the form of HTML @. In
short, PHP creates an HTML page on the
fly based on parameters of your choosing.

This differs from an HTML-generated site
in that when a request is made, the server
merely sends the HTML data to the Web
browser—no server-side interpretation

occurs @. Hence, to the end user’s
browser, there may or may not be an
obvious difference between what home.
html and home.php look like, but how
you arrive at that point is critically altered.
The major difference is that by using PHP,
you can have the server dynamically
generate the HTML code. For example,
different information could be presented
if it's Monday as opposed to Tuesday or
if the user has visited the page before.
Dynamic Web page creation sets apart the
less appealing, static sites from the more
interesting and, therefore, more visited,
interactive ones.

The central difference between using PHP
and using straight HTML is that PHP does
everything on the server and then sends
the appropriate information to the browser.
This book covers how to use PHP to send
the right data to the browser.

Client URL Request

HTML

Server
> VOOOV-> : i z uﬁuuu{ : o' X |
H [[[H
: Script
HTML Request :
(PHP

QThis graphic demonstrates (albeit in very simplistic terms) how the process
works between a client, the server, and a PHP module (an application added
to the server to increase its functionality) to send HTML back to the browser.

Server
= D00 & & e) TII] ()
< i il

HTML

Client URL Request

0 Compare this direct relationship of how a server works handles basic
HTML to V. This is also why HTML pages can be viewed in your browser
from your own computer—they don’t need to be “served,” but dynamically
generated pages need to be accessed through a server that handles

the processing.

www.LarryUllman.com
www.LarryUllman.com

Open a Recent Rem

Dan't howagan

0 The popular Dreamweaver application
supports PHP development, among other
server-side technologies.

What You'll Need

The most important requirement for
working with PHP—because it’s a server-
side scripting language—is access to a
PHP-enabled server. Considering PHP’s
popularity, your ISP or Web host most likely
has this option available to you on their
servers. You'll need to contact them to see
what technology they support.

Your other option is to install PHP and a
Web server application (like Apache) on
your own computer. Users of Windows,
Mac OS X, or Linux can easily install

and use PHP for no cost. Directions for
installing PHP are available in Appendix A,
“Installation and Configuration.” If you’re up
to the task of using your own PHP-installed
server, you can take some consolation

in knowing that PHP is available for free
from the PHP Web site (www.php.net) and
comes in easy-to-install packages. If you
take this approach, and | recommend that
you do, then your computer will act as both
the client and the server.

The second requirement is almost a
given: You must have a text editor on
your computer. Crimson Editor, SciTE,
TextWrangler, and similar freeware
applications are all sufficient for your
purposes; and BBEdit, TextPad, TextMate,
and other commercial applications offer
more features that you may appreciate. If
you’re accustomed to using a graphical
interface (also referred to as WYSIWYG—
What You See Is What You Get) like Adobe
Dreamweaver @) or Aptana Studio, you
can consult that application’s manual to
see how to program within it.

continues on next page

Introduction xv

www.php.net

Third, you need a method of getting the
scripts you write to the server. If you've
installed PHP on your own computer, you
can save the scripts to the appropriate
directory. However, if you're using a
remote server with your ISP or Web host,
you’ll need an FTP (File Transfer Protocol)
program to send the script to the server.
There are plenty of FTP applications
available; in Chapter 1, “Getting Started
with PHP,” | use the free FileZilla (http:/
filezilla-project.org @) for an example.

Finally, if you want to follow the examples
in Chapter 12, “Intro to Databases,” you
need access to MySQL (www.mysq|.

com @) or another database application.
MySQL is available in a free version that
you can install on your own computer.

This book assumes only a basic knowledge
of HTML, although the more comfortable
you are handling raw HTML code without
the aid of a WYSIWYG application such

as Dreamweaver, the easier the transition
to using PHP will be. Every programmer
will eventually turn to an HTML reference
at some time or other, regardless of how
much you know, so | encourage you to
keep a good HTML book by your side. One
such introduction to HTML is Elizabeth
Castro’s HTML, XHTML, and CSS: Visual
QuickStart Guide (Peachpit Press, 2007).

Previous programming experience is
certainly not required. However, it may
expedite your learning, because you'll
quickly see numerous similarities between,
for example, Perl and PHP or JavaScript
and PHP.

06 - e TR BE
EFileZilla........

Download

la Server

@ Piormal TP connecoons naw aheys SHeTET b reganians seaus TP ovar TLS

o The FileZilla application can be used on many
different operating systems to move PHP scripts
and other files to a remote server.

G- m o W el ! 1B s

' MySOL on'Windows

= Rl y,.h_gg_&_Hnw —— -

G MySQL's Web site (as of this writing).

xvi Introduction

http://filezilla-project.org
http://filezilla-project.org
www.mysql.com
www.mysql.com

Script i1 A sample PHP script, with line numbers

and bold emphasis on a specific section of code.

1

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML

1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/

xhtml" xml:lang="en" lang="en">

<head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
<title>Hello, World!</title>

</head>

<body>

<?php print "Hello, World!"; ?>

</body>

</html>

What's New in This Book?

I would consider this fourth edition to be a modest revision of an already solid book. The biggest
change in this edition is the removal of the previous version of Chapter 13, covering regular
expressions. The type of regular expressions being discussed in earlier versions of the book
have since been deprecated, meaning support for them is being dropped from the language. A
more complex way of addressing regular expressions is beyond what’s appropriate for beginning
readers, and is covered in detail in my PHP 6 and MySQL 5 for Dynamic Web Sites: Visual
QuickPro Guide (Peachpit Press, 2008).

As a replacement for the excised material, the new Chapter 13, “Putting It All Together,” walks
you through the creation of a fully functioning Web site, using almost everything discussed in the
entire book (while still teaching a couple of tricks). | hope you’ll find this added chapter to be an
illuminating demonstration of how to apply your new knowledge.

About This Book

This book attempts to convey the
fundamentals of programming with

PHP while hinting at some of the more
advanced features you may want to
consider in the future, without going into
overwhelming detail. It uses the following
conventions to do so.

The step-by-step instructions indicate what
coding you’re to add to your scripts and
where. The specific text you should type is
printed in a unique type style to separate it
from the main body text. For example:

<?php print "Hello, World!"; ?>

The PHP code is also written as its own
complete script and is numbered by line for
reference (Script i.1). You shouldn’t insert
these numbers yourself, because doing so
will render your work inoperable.

continues on next page

Second, each chapter in this edition of the book now concludes with a “Review and Pursue”
section. Over a page or two, you'll be asked questions meant to reinforce some of the chapter’s
key points. Prompts will direct you toward ways you can learn related, additional information, or try
similar exercises. Help with the questions and prompts can be found in the book’s corresponding
forum (at www.LarryUllman.com/forum/).

Finally, | tweaked some of the examples mostly to satisfy my own drive for perfection.

Introduction xwii

www.LarryUllman.com/forum/

| recommend using a text editor that
automatically displays the line numbers for
you—the numbers will help when you're
debugging your work. In the scripts you’ll
sometimes see particular lines highlighted
in bold, in order to draw attention to new or
relevant material.

Because of the nature of how PHP works,
you need to understand that there are
essentially three views of every script: the
PHP code (e.g., Script i), the code that’s
sent to the browser (primarily HTML), and
what the browser displays to the end user.
Where appropriate, sections of or all of the
browser window are revealed, showing the
end result of the exercise €). Occasionally,
you’ll also see an image displaying the
HTML source that the browser received @.
You can normally access this view by
choosing View Source or View Page Source
from the appropriate Web browser menu.
To summarize,) displays the HTML the
browser receives, and iy demonstrates how
the browser interprets that HTML. Using
PHP, you’ll create the HTML that’s sent to
the browser.

&
Go- o

ur Pavorites {5 Hello, World!

10.0.1.2:1 ||| B |42 X | |

" Hello, World! - Windows Internet Ex... [';][E|B|

Because the column in this book is narrower
than the common text editor screen,
sometimes lines of PHP code printed in the
steps have to be broken where they would
not otherwise break in your editor. A small
gray arrow indicates when this kind of break
occurs. For example:

print "This is going to be a longer
line of code.";

You should continue to use one line in
your scripts, or else you’ll encounter errors
when executing them. (The gray arrow isn’t
used in scripts that are numbered.)

While demonstrating new features and
techniques, I'll do my best to explain the
why’s and how’s of them as | go. Between
reading about and using a function, you
should clearly comprehend it. Should
something remain confusing, though, this
book contains a number of references where
you can find answers to any questions (see
Appendix B, “Resources and Next Steps”). If
you're confused by a particular function or
example, your best bet will be to check the
online PHP manual or the book’s supporting
Web site (and its user support forum).

O This is a sample view you’ll see of the
browser window. For the purposes of this
book, it won’t make any difference which
Web browser or operating system you use.

Tello, World!

a hirp:/A10.0.1. 2:ARRALcript_1_01.php - Original Snurce

[P

Fle Edt Format

<!DOCTYPE himl PUBLIC "-//W3C//DTD XHTHL 1.0 Trmnsitivnal//EN"

"htop://WUW.W3.0rg/ TR/ Xhtmll/DTD/ Xhtmll-transicional . dod™>
<html wmina="http:/Sunm. w3 orgd 1999 vhtml ™ wml: lang="en" lang="en">
<head>

.

emeta http cguiv-"Content Type" content—"tent/html; chorsct-uct S7/>

0 By viewing the
<titlerll=llo, World!</title> B
</ head> source code received
<body> by the Web browser,
fj}l\é;'l\“’c'“dwhc‘d"" you can see the HTML
created by PHP and
sent by the server.

WL Oa W

=

xviii Introduction

Which Book Is Right for You?

This is the fourth edition of my first
book on PHP. Like the original,

it’s written with the beginner or
nonprogrammer in mind. If you have
little or no programming experience,
prefer a gentler pace, or like to learn
things in bite-sized pieces, this is the
book for you. Make no mistake: This
book covers what you need to know
to begin develop dynamic Web sites
(while using practical examples), but it
does so without any in-depth theory or
advanced applications.

Conversely, if you pick up new
technologies really quickly or already
have some experience developing Web
sites, you may find this to be too basic.
In that case, you should consider my
PHP 6 and MySQL 5 for Dynamic
Web Sites: Visual QuickPro Guide
instead (Peachpit Press, 2008). It
discusses SQL and MySQL in much
greater detail and goes through several
more complex examples, but it does so
at a quick jog.

Companion Web Site

While you’re reading this book, you may also
find it helpful to visit the PHP for the Web:
Visual QuickStart Guide, 4th Edition Web
site, found within www.LarryUllman.com.
There you’ll find every script in this book
available in a downloadable form. (However,
| strongly encourage you to type the scripts
yourself in order to become more familiar
with the structure and syntax of PHP)

The site also includes a more detailed
reference section with links to numerous
useful Web pages where you can continue
learning PHP. In addition, the site provides
an errata page listing any mistakes made
in this text.

What many users find most helpful, though,
is the book’s supporting forum, found
through the Web site or more directly at
www.LarryUllman.com/forum/. Using the
forum, you can:

m Find answers to problems you’re having

m Receive advice on how to approach an
idea you have

m Get debugging help

m See how changes in the technologies
have affected the examples in the book

m |earn what other people are doing
with PHP

m Confirm the answers to review questions

m Receive a faster reply from me than if
you send me a direct email

Introduction xix

www.LarryUllman.com
www.LarryUllman.com/forum/

Questions, comments,
or suggestions?

If you have a PHP-specific question, there
are newsgroups, mailing lists, and question-
and-answer sections available on PHP-
related Web sites for you to turn to. These
are discussed in more detail in Appendix B.
Browsing through these references or
searching the Internet will almost always
provide you with the fastest answer.

You can also direct your questions,
comments, and suggestions to me. You'll
get the fastest reply using the book’s
corresponding forum (I always answer those
questions first). If you’d rather email me, you
can do so through the contact page on the
Web site. | do try to answer every email |
receive, but it will probably take a week or
two (whereas you'll likely get a reply in the
forum within a couple of days).

For more tips and an enlightening read,
see the sidebar and Eric Steven Raymond’s
“How to Ask Questions the Smart Way” at
www.catb.org/Yesr/fags/smart-questions.
html. The 10 minutes you spend on it will
save you hours in the future. Those people
who will answer your questions, like myself,
will be most appreciative!

How to Ask Questions the
Smart Way

Whether you're posting a message to
the book’s supporting forum, sending
me an email, or asking a question in

a newsgroup, knowing how to most
effectively ask a question improves the
quality of the response you’ll receive as
well as the speed with which you’ll get
your answer. To receive the best answer
in the shortest amount of time, follow
these steps:

1. Search the Internet, read the manu-
als, and browse any applicable
documentation.

2. Ask your question in the most appro-
priate forum (newsgroup, mailing list,
and so on).

3. Use a clear and concise subject.

4. Describe your problem in detail, show
any relevant code, say what went
wrong, indicate what version of PHP
you’re using, and state what operat-
ing system you’re running.

xx Introduction

www.catb.org/~esr/faqs/smart-questions.html
www.catb.org/~esr/faqs/smart-questions.html

Getting Starteo

with PHP

When learning any new programming
language, you should always begin with
an understanding of the basic syntax and
functionality, which is what you’ll learn

in this chapter. The focus here is on the
fundamentals of both HTML and PHP, and
how the two languages work together. The
chapter also covers some recommended
programming and debugging techniques,
the mastery of which will improve your
work in the long run.

If you've never programmed before, a
focused reading of this chapter will start
you on the right track. If you have some
programming experience, you’ll be able

to breeze through these pages, gaining

a perspective for the book’s remaining
material in the meantime. By the end of this
chapter you will have successfully written
and executed your first PHP scripts and be
on your way to developing dynamic Web
applications.

In This Chapter

Basic HTML Syntax

Basic PHP Syntax

Using FTP

Testing Your Script

Sending Text to the Browser
Using the PHP Manual
Sending HTML to the Browser
Adding Comments to Scripts
Basic Debugging Steps

Review and Pursue

10
12
15

22
25
28
30

Basic HTML Syntax

All Web pages are made using HTML
(Hypertext Markup Language). Every Web
browser, be it Microsoft’s Internet Explorer,
Apple’s Safari, Mozilla’s Firefox, or Google’s
Chrome, turns HTML code—

<h1>Hello, Woxld!</h1>
I just wanted to say Hello.

—into the stylized Web page seen by
the user @.

As of this writing, the most current version
of HTML is 4.01. The next major release,
HTML 5, is being actively developed and
discussed, but is not production ready
(again, as of this writing). This book uses

a slight variant of HTML called XHTML
(eXtensible HTML). XHTML is almost exactly
like HTML, with the following differences:

m All tags are written in lowercase.
m Nested tags must be well formed.

This rule isn’t as complicated as it
sounds. It means that you can’t write
<div><p>text</div></p>; instead you
use <divs><p>text</p></div>.

m All tag attributes must be quoted.

In HTML, you might write <table
border=25, but in XHTML, you must
use <table border="2">.

m All tags must be closed.

This rule is the most confusing for
most people. Many HTML tags have
both an open and a close, like <div
class="someclass">text</div>.
However, a few don’t have implicit
closing tags. These include <hr»,
,
, and <input>. To make these
valid XHTML tags, you need to close

Hello, World!

| just wanted to say Hello.

0 How one Web browser
renders the HTML code.

2 Chapter1

them by adding a space and a slash at
the end, like this:

<hr />

<input type="text" name="age" />

Basic CSS

The HTML and XHTML elements define a page’s content, but formatting the look and behavior
of such content is best left to CSS (Cascading Style Sheets). As with HTML and XHTML, this book
does not teach CSS in any detail, but as some of the book’s code will use CSS, you should be
familiar with its basic syntax, too.

You can add CSS to a Web page in a couple of ways. The first, and recommended, method is to
use HTML style tags:

<style type="text/css">
rules
</style>

Between the opening and closing tags, the CSS rules are defined. You can also use the 1ink
HTML tag to incorporate CSS rules defined in an external file:

<link href="styles.css" rel="stylesheet" type="text/css" />

CSS rules are applied to combinations of general page elements, CSS classes, and specific items:
img { border: opx; }

.exror { color: red; }

#about { background-color: #ccc; }

The first rule applies to every image tag. The second applies to any element that has a class of error:
<p class="error">Error!</p>

The third rule applies to just the specific element that has an ID value of about:

<p id="about">About...</p>

(Not all elements need to have an id attribute, but no two elements can have the same id value.)

For the most part, this book will just use CSS to do simple things, such as changing the color or
background color of an element or some text.

Even though using a separate CSS section or file is best, in order to keep things simple, this book
will occasionally apply CSS inline:

<p style="color: red;">Error!</p>

For more on CSS, search the Web or see a dedicated book on the subject.

Getting Started with PHP 3

Before getting into the syntax of PHP,
let’s create one simple but valid XHTML
document that will act as a template for
almost all of this book’s examples.

To create an XHTML page:

1. Open your text editor or Integrated
Development Environment (IDE).

You can use pretty much any
application to create HTML, XHTML,
and PHP pages. Popular choices
include Adobe’s Dreamweaver (www.
adobe.com), which runs on Windows
and Mac OS X; EditPlus (www.editplus.
com) and Crimson Editor (www.
crimsoneditor.com) for Windows; and
Bare Bones’ BBEdit (www.barebones.
com) or MacroMates’ TextMate (www.
macromates.com) for the Mac.

2. Choose File > New to create a new,
blank document.

Some text editors allow you to start by
creating a new document of a certain
type—for example, a new XHTML file @.
If your application has this option, use it.

3. Start with the XHTML header lines
(Script 1.1):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
A valid XHTML document begins with
these lines. They tell the Web browser
what type of document to expect. For this
template, and in the entire book, XHTML
1.0 Transitional pages will be created.

New HTML Document

|_lInsert XML Declaration
™ Insert DOCTYPE [XHTML 1.0 Transitional |%

VI HTML v Head v/ Body
™ Cive BBEdit Credit

Title: !Emitlfd - B -]
Lang: B Charser: E]
Base:

Meta:

Link:

Web Site: | Untitled Site 4

Template: | Default b]

(" Cancel) OK)

0 BBEdit and most other Web development
applications will create the basics of an XHTML
document for you.

Script 1.1 This sample document shows the basics
of XHTML code.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/
xhtmli-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>

5 <meta http-equiv="content-type"

content="text/html; charset=utf-8" />

6 <title>Welcome to this Pagel</title>

7 </head>

8 <body>

9 <h1>This is a basic XHTML page!</h1>

10

11 <p>Even with <span style="font-size:
150%;">some decoration, it's still
not very exciting.</p>

12 </body>

13 </html>

4 Chapter1

www.adobe.com
www.adobe.com
www.editplus.com
www.editplus.com
www.crimsoneditor.com
www.crimsoneditor.com
www.barebones.com
www.barebones.com
www.macromates.com
www.macromates.com

Understanding Encoding

Encoding is a huge subject, but what
you most need to understand is this:
the encoding you use in a file dictates
what characters can be represented
(and therefore, what languages can
be used). To select an encoding, you
must first confirm that your text editor
or IDE can save documents using that
encoding. Some applications let you
set the encoding in the preferences or
options area; others set the encoding
when you save the file.

To indicate to the Web browser the
encoding being used, there’s the
corresponding meta tag:

<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

The charset=utf-8 part says that UTF-8
(short for 8-bit Unicode Transformation
Format) encoding is being used. Unicode
is a way of reliably representing every
symbol in every alphabet. Version 6

of Unicode—the current version as of
this writing—supports over 99,000
characters! The most commonly used
Unicode encoding is UTF-8.

If you want to create a multilingual Web
page, UTF-8 is the way to go and I'll be
using it in this book’s examples. You
don’t have to, of course. But whatever
encoding you do use, make sure that the
encoding indicated by the XHTML page
matches the actual encoding used by the
text editor or IDE. If you don’t, you'll likely
see odd characters when you view the
page in a Web browser.

This means adherence to XHTML 1.0
standards. The Transitional part means
the page can use deprecated (no longer
recommended) tags (as opposed to Strict
mode, which isn’t forgiving).

. Create the head section of the page:

<head>
<meta http-equiv="content-type"
content="text/html;
charset=utf-8"/>
<title>Welcome to this Page!
</title>
</head>

The head of an XHTML page includes
the content-type meta tag, required

for valid XHTML. The “Understanding
Encoding” sidebar discusses what the
charset part of the tag means.

The head also contains the page’s
title, which will appear at the top of
the browser window, as well as in the
browser’s bookmarks and history. You
can also place JavaScript and CSS
references in the head.

. Create the body section:

<body>

<h1>This is a basic XHTML page!
</h1>

<p>Even with <span style=
"font-size: 150%;">some
decoration, it's still not very
exciting.</p>

</body>

continues on next page

Getting Started with PHP B

The page’s content—what is seen in the
Web browser—goes between opening
and closing body tags. Per XHTML rules,
the break tag (
)includes a space
before the slash that closes it. All the
other tags are similar to their standard
HTML counterparts except that they're
in lowercase. CSS is used to increase
the font size for the word some.

6. Type </html> to complete the
HTML page.

7. Choose File > Save As. In the dialog
box that appears, choose Text Only
(or ASCII) for the format, if you’re given
the option.

XHTML and PHP documents are just
plain text files (unlike, for example, a
Microsoft Word document, which is
stored in a proprietary format). You may
also need to indicate the encoding
when you save the file (again, see

the sidebar).

8. Navigate to the location where you wish
to save the script.

You can place this script anywhere you’d
like on your computer, although using
one dedicated folder for every script in
this book, perhaps with subfolders for
each chapter, makes sense.

9. Save the file as welcome.html.

Even though you’re coding with
XHTML, the page will still use the
standard .html extension.

10. Test the page by viewing it in your
Web browser @.

Unlike with PHP scripts (as you'll soon
discover), you can test XHTML and
HTML pages by opening them directly
in a Web browser.

@D Use the book’s support forum
(www.LarryUllman.com/forum/) or search
the Web to find a good HTML and PHP
editor or IDE.

The book uses XHTML, but that doesn’t
mean you have to. If you’re more comfortable
with HTML, stick with what you know. It won’t
affect the operability of your PHP scripts.

For more information on XHTML and
HTML, check out Elizabeth Castro’s excellent
book, HTML, XHTML, and CSS, Sixth Edition:
Visual QuickStart Guide (Peachpit Press, 2006).

I'll use the terms HTML and XHTML
interchangeably throughout the book. In fact,
you’ll probably see just HTML the majority of
the time, but understand that | mean XHTML
as well.

fano Welcome Lo this Page!

This is a basic XHTML page!

Even with SOIME decoration, it's still not very exciting.

G The XHTML page, as interpreted by the

Web browser.

6 Chapter1

www.LarryUllman.com/forum/

Basic PHP Syntax

Now that you’ve seen how HTML will be
handled in this book, it’s time to begin PHP
scripting. To create your first PHP page,
you’ll start exactly as you would if you
were creating an HTML document from
scratch. Understanding the reason for this
is vitally important: Web browsers are client
applications that understand HTML; PHP
is a server-side technology, which cannot
be run in the client. To bridge this gap,
PHP will be used on the server to generate
HTML that’s run in a Web browser (refer

to the book’s Introduction for a visual
representation of this relationship).

There are three main differences between
a standard HTML document and a PHP
document. First, PHP scripts should be
saved with the .php file extension (for
example, index.php). Second, you place
PHP code within <?php and ?> tags,
normally within the context of some HTML:

<body><h1>This is HTML.</h1>
<?php PHP code! ?>
<p>More HTML</p>

The PHP tags indicate the parts of the
page to be run through the PHP processor
on the server. This leads to the third major
difference: PHP scripts must be run on a
PHP-enabled Web server (whereas HTML
pages can be viewed on any computer,
directly in a browser). This means that PHP
scripts must always be run through a URL
(i.e., http://something/page.php). If you're
viewing a PHP script in a Web browser and
the address does not begin with http, the
PHP script will not work.

continues on next page

Getting Started with PHP 7

http://something/page.php

To make this first PHP script do something
without too much programming fuss, you’ll
use the phpinfo() function. This function,
when called, sends a table of information
to the Web browser. That table lists the
specifics of the PHP installation on that
particular server. It's a great way to test
your PHP installation, and it has a high
“bang for your buck” quality.

To create a new PHP script
on your computer:

1. Create a new HTML document in
your text editor or IDE, to be named
phpinfo.php (Script 1.2):

<!DOCTYPE html PUBLIC "-//W3C//
DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />
<title>First PHP Script</title>
</head>
<body>
</body>
</html>

This particular HTML is largely irrelevant
to the overall point of creating a PHP
page—but, for consistency’s sake, this
is the same template as in the basic
XHTML example (Script 1.1).

Script 1.2 This first PHP script takes a typical HTML
page, adds the PHP tags, and invokes a PHP function.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtm11/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />

6 <title>First PHP Script</title>

7 </head>

8 <body>

9 <?php

10 phpinfo();

11

12 </body>

13 </html>

8 Chapter1

. Create some blank lines between the

opening and closing body tags by
pressing Return (Mac) or Enter (PC).

. Type <?php on its own line, just after the
opening body tag.

This initial PHP tag tells the server that
the following code is PHP and should
be handled as such.

. Add the following on the next line:
phpinfo();

The syntax will be explained in detail
later, but in short, this is just a call to an
existing PHP function named phpinfo.
You must use the opening and closing
parentheses, with nothing between
them, and the semicolon.

. Type ?> on its own line, just before the
closing body tag.

The closing PHP tag tells the server
that the PHP section of the script is
over. Any text outside of the PHP tags
is immediately sent to the Web browser
as HTML and isn’t treated as PHP code.

. Save the script as phpinfo.php.

Not to overstate the point, but
remember that PHP scripts must use

a valid file extension. Most likely you'll
have no problems if you save your files
as filename.php.

You also need to be certain that the
application or operating system is not
adding a hidden extension to the file.
Notepad on Windows, for example, will
attempt to add .txt to uncommon file
extensions, which will render the PHP
script unusable.

Just as a file’s extension on your
computer tells the operating system in what
application to open the file, a Web page’s
extension tells the server how to process

the file: file.php goes through the PHP
module, file.aspx is processed as ASP.NET,
and file.html is a static HTML document
(normally). The extension associations are
determined by the Web server’s settings.

@D If you're developing PHP scripts for a
hosted Web site, check with your hosting com-
pany to learn which file extensions you can
use for PHP documents. In this book you’ll see
.php, the most common extension.

@D You’ll occasionally see PHP’s short tags—
simply <? and ?>—used in other people’s
scripts, although it’s best to stick with the
formal tags. In fact, support for the short tags
is being dropped from the language.

@D You'll find it handy to have a copy of the
phpinfo.php file around. As you’ll soon see,
this script will report upon PHP’s capabilities,
settings, and other features of your server.

In fact, this book will frequently suggest you
return to this script for those purposes.

PHP scripts can also be executed with-
out a Web browser, using a command-line
interface and a stand-alone PHP executable.
But that topic is well outside the scope of this
book (and it’s a much less common use of PHP
regardless).

Getting Started with PHP 9

Using FTP

Unlike HTML, which can be tested directly
in @ Web browser, PHP scripts need to be
run from a PHP-enabled server in order for
you to see the results. Specifically, PHP

is run through a Web server application,
like Apache (http://httpd.apache.org),
Abyss (www.aprelium.com), or Internet
Information Server (IIS, www.iis.net).

There are two ways you can obtain a PHP-
enabled server:

1. Install the software on your computer.

PHP scripts to the PHP-enabled server
using FTP (File Transfer Protocol).

The Web hosting company or server’s
administrator will provide you with FTP
access information, which you’ll enter

into an FTP client. There are many FTP
client applications available; in this next
sequence of steps, I'll use the free FileZilla
(http://filezilla-project.org/), which runs on
many operating systems.

To FTP your script to the server:
1. Open your FTP application.

2. Acquire Web hosting. 2. In the application’s connection window,
. o enter the information provided by your
PHP is open source software (meaning, in
’ ! Web host @.
part, that it's free) and is generally easy)
to install (with no adverse effect on your FTP access requires a hostname (e.g.,
computer as a whole). If you want to install the domain name or an IP address),
PHP and a Web server on your computer, username, and password.
follow the directions in Appendix A, 3. Click Quickconnect (or your FTP
“Installation and Configuration.” Once client’s equivalent).
you’ve dc?ne S0, you can skip ahead to the If you've provided the correct
next section of the chapter, where you’ll . .
" ’ information, you should be able to
learn how to test your first PHP script.)
connect. If not, you’'ll see error messages

If you’re not running PHP on your own at the top of the FileZilla window @.
computer, you’ll need to transfer your

ano FileZilla =
A AN sa e DG

Host: www.larryullman, Username: someuser Password: sssesssss Port: fQuickcurmect i'|
o The connection section of FileZilla’s main window (as it appears on the Mac).

800 FileZilla =

)

A AP s s G

Host: www.larryullman| Username: someuser

Password:; esessssssce

Part:

(" Quickconnect ﬂ'

USER someuzer

331 Pazzword required for someuser
PASS
530 Login incarrect.

Critical error

Could not connect 1o senver

Command:
Response:
Command:
Rezponse:
Error:
Errar:

<«

0 The reported error says that the login information is incorrect.

10 Chapter1

http://httpd.apache.org
www.aprelium.com
www.iis.net
http://filezilla-project.org/

4. Navigate to the proper directory for
your Web pages (for example, www,
htdocs, or httpdocs).

The FTP application won’t necessarily
drop you off in the appropriate directory.
You may need to do some navigation

to get to the Web document root. The
Web document root is the directory

on the server to which a URL directly
points (for example, www.larryullman.
com). If you’re unsure of what the Web
document root is for your setup, see the
documentation provided by the hosting
company (or ask them for support).

In FileZilla, the right-hand column
represents the files and directories

on the server; the left-hand column
represents the files and directories on
your computer @. Just double-click on
folders to enter them.

5. Upload your script—phpinfo.php—to
the server.

To do this in FileZilla, you just need to
drag the file from the left column—your
computer—to the right column—the server.

@D Some text editors and IDEs have
built-in FTP capability, allowing you to save
your scripts directly to the server. Some, like
Dreamweaver and TextMate, can run PHP
scripts without leaving the application at all.

Local site: /Users/larryullman/Sites/ @ Remote site: /httpdocs @
¥ W Filurey ® conl
F W Public m # emor_docs m
P) Sites : F i htpdocs :
- o [, [y
Fllename Fllezize | Flletype Lart modified Fllename Fllesize Fllerype Last modified
W DMl Diractory U8/11j201 . s Dlrectory 10022010)
W Larrddiiman Direcory 104305201 W downloads Direciory LlIOZ}ZOlU...’
) Lirectory 114104 200% W Torum Lirzctony llIUZ}ZUlU...:
w Ml Dlog Directory 10j04/201 » images Directory 11j02/2010. |8
o i Directary 11j11200 g img Directary 10j08/2010 |}
g Till3 Diireciory OF 162010 . s Direciury 10J2 L2010,

o I've successfully connected to the remote server and navigated into the httpdocs
directory (aka the Web document root).

Getting Started with PHP 11

Testing Your Script

Testing a PHP script is a two-step process.
First you must put the PHP script in the
appropriate directory for the Web server.
Second, you run the PHP script in your
Web browser by loading the correct URL.

If you’re using a separate Web server,

like one provided by a hosting company,
you just need to use an FTP application

to upload your PHP script to it (as in the
previous steps). If you have installed PHP
on your personal computer, then you can
test your PHP scripts by saving them in, or
moving them to, the Web document root.
This is normally

m ~/Sites for Mac OS X users (where
~ stands for your home directory)

m AbyssDir/htdocs on any operating
system, where AbyssDir is the directory
in which the Abyss Web Server was
installed

= C:\Inetpub\wwwroot for Windows users
running lIS

m C:\xampp\htdocs for Windows users
running XAMPP (www.apachefriends.com)

m /Applications/MAMP/htdocs for Mac
users running MAMP (www.mamp.info)

If you’re not sure what the Web
document root for your setup is, see
the documentation for the Web server
application or operating system (if the
Web server application is built-in).

Once you’ve got the PHP script in the right
place, use your browser to execute it.

To test your script in the browser:
1. Open your favorite Web browser.

For the most part, PHP doesn’t behave
differently on different browsers
(because PHP runs on the server), so
use whichever browser you prefer. In
this book, you’ll see that | primarily use
Firefox and Safari, regardless of the
operating system.

2. In the browser’s address bar, enter the
URL of the site where your script has
been saved.

In my case, | enter www.larryullman.com,
but your URL will certainly be different.

If you’re running PHP on your own
computer, the URL is http://localhost
(Windows); or http://localhost/~username
(Mac OS X), where you should replace
username with your username. Some
all-in-one packages, such as MAMP and
XAMPP, may also use a port as part of
the URL: http://localhost:8888.

If you’re not sure what URL to use, see
the documentation for the Web server
application you installed.

12 Chapter1

www.apachefriends.com
www.mamp.info
www.larryullman.com

3. Add /phpinfo.php to the URL.

If you placed the script within a sub-

directory of the Web document root, you
would add that subdirectory name to the

URL as well (e.g., /cho1/phpinfo.php).
4. Press Return/Enter to load the URL.

The page should load in your browser
window @.

continues on next page

System Darwin Lamy-Ulimans-ivac local 10.4.1 Darwin Kermel Version 10.4.1: Fri Jul 16 23:04:20
POT 20°10; rootxnu-1504.7.5°1~ 1RELEASE_I380 1386

Build Date |Mar 5 2010 16:41:09

Configire “leonfigura’ —-with-myaql=lApplicationsfdAMPI Ibrane” --with-

Command |apxs2=lApplicationsiAMPIL ibrandbintapxs “-with-gd" --with-jpeg-
dir=tapplicationsidAMPILibrary —with-png-dir=lApplicationsitArPILibrary” —-with-zliky" --
with-lrestype-dir=lApplicationstAMPILibrary” --prefin=lapplicationsiMAMPRinphp5.3" -
exec-prefi=lapplicalio SIMAMPIDING NPS. 3 -SySconidir=lApplcallonsivAbPICOniphpS. 3 -
with-soap” -with-config-ils-path=lApplicationsiMaMPloniiphpS. 37 —-snakble-rack-vars’ -
chnable bemath™ ' cnable ip' ' enable gd native B with ba2=lusr'* with ldap'® with
myadli=lApplicationshd AP ibrangbinbrysgl_config’ “-with-sglife” --with-Hf" -with-
Hlib=tApplicationsidAmPILibrary” --enable-mbstring=all” --with-
curl=tapplicationshAMPILibrary” --enable-dbx’ --enable-sockets” --enable-bomath” --with-
imap=shared lApplicationsiAMPILibranliplimap-2007e” -enable-soap” —with-kerberos’
ehable-calendar —wih-pgsgi=shared JApplicationsifAMPILIErNipg —enable-gbase -
enakle-sxil —-with-lismbdir=tApplicationsitdAhPI Library” --with-
gettort=chared bipplicationoihdsNILibrany” ' with xsl=ldpplicationsiibAMLibrany * with
poo-rmysgl=sharad JApplicationsMAMPI ibrany --with-pdo-
pasal=shared tApplicationsfdAMPILibranipg” --with-
merypt=shared JapplicationsitaMPILibrary” —with-openss|’

Server APl | Apache 2 N Handler

Yirtual disaliled

Directory

Support

Configuration | EApplicationsibdAPiconfiphp 5.3

File {phiini)

Path

Loaxled iLibrargApplication SupportappsolubsiiAbP PROKonfehg.ini

Configuration

File

Scan this oir ({nons)

for additional

inifiles

Additional .ini [{nonsy

files parsed

PHP API 20090626

PHP 20090626

3

14

s

o If the script has been executed correctly, the browser result should look like this (woohoo!).

Getting Started with PHP

13

If you see the PHP code @ or a blank
page, it could mean many things:

» You are not loading the PHP script
through a URL (i.e., the address does
not begin with http).

» PHP has not been enabled on the
server.

» You are not using the proper extension.

If you see a file not found or similar
error @, it could be because

» You entered the incorrect URL.

» The PHP script is not in the proper
directory.

» The PHP script does not have the
correct name or extension.

It's very important to remember that

you can’t open a PHP file directly in a Web
browser as you would open HTML pages or
files in other applications. PHP scripts must
be processed by the Web server, which means
you must access them via a URL (an address
that starts with http://).

Even if you aren’t a seasoned computer
professional, you should consider installing
PHP on your computer. Doing so isn’t too dif-
ficult, and PHP is free. Again, see Appendix A
for instructions.

Technically speaking, you don’t need to
add any HTML to a phpinfo() script. If you
don’t, the phpinfo() function will still gener-
ate a complete HTML page.

o NeNe) phpinfo.php

<i?php
phpinfo();
red

0 If you see the raw PHP code,
then the PHP code is not being
executed.

0o 404 Not Found

Not Found

The requested LIRL. [phpint php was not found on this server.

o This server response indicates a mismatch
between the URL attempted and the files that
actually exist on the server.

14 Chapter 1

Sending Text to
the Browser

PHP wouldn’t be very useful if all you
could do was see that it works (although
that confirmation is critical). You’ll use PHP
most frequently to send information to the
browser in the form of plain text and HTML
tags. To do so, use print:

print "something";

Just type the word print, followed by what
you want to display: a simple message, the
value of a variable, the result of a calculation,
and so forth. In the previous example,

the message is a string of text, so it must
be surrounded with quotation marks (in
comparison, numbers are not quoted).

To be clear, print doesn't actually print
anything; it just outputs data. When a PHP
script is run through a Web browser, that
PHP output is received by the browser itself.

Also notice that the line is terminated with
a semicolon (;). Every statement in PHP
code must end with a semicolon, and
forgetting this requirement is a common
cause of errors. A statement in PHP is an
executable line of code, like

print "something";
or
phpinfo();

Conversely, comments, PHP tags, control

structures (conditionals, loops, and so on),
and certain other constructs discussed in

this book don’t require semicolons.

Finally, you should know about a minor
technicality: whereas phpinfo() is a function,
print is actually a language construct.
Although it’s still standard to refer to print
as a function, because print is a language
construct, no parentheses are required when
using it, as in the phpinfo() example.

Getting Started with PHP 15

To print a simple message:

1. Begin a new HTML document in

your text editor or IDE, to be named
hello.php (Script 1.3):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />
<title>Hello, World!</title>
</head>
<body>
<p>The following was created
by PHP:

Most of this code is the standard HTML.
The last line will be used to distinguish
between the hard-coded HTML and the
PHP-generated HTML.

. On the next line, type <?php to create
the initial PHP tag.

. Add

print "Hello, world!";

Printing the phrase Hello, world! is the
first step most programming references
teach. Even though it’s a trivial reason to
use PHP, you’re not really a programmer
until you’ve made at least one Hello,
world! application.

Script 1.3 By putting the print statement between
the PHP tags, the server will dynamically send the
Hello, world! greeting to the browser.

1

2

v

O 0 ~N O

11
12
13
14
15

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">
<head>
<meta http-equiv="content-type"
content="text/html; charset=utf-8" />
<title>Hello, World!</title>
</head>
<body>
<p>The following was created by PHP:
<?php
print "Hello, world!";
fod
</p>
</body>
</html>

16 Chapter1

anon Hello, World!

The following was created by PHP: Hello, world!

o A simple Hello, world! example: your first
foray into PHP programming.

4. Close the PHP section and complete
the HTML page:

>

</p>
</body>
</html>

5. Save the file as hello.php, place it on
your PHP-enabled server, and test it in
your browser @.

If you’re running PHP on your own
computer, remember that you can save
the file to the proper directory and
access the script via http://localhost/.

If you see an error or a blank page
instead of the results shown in the
figure, see the debugging section at
the end of this chapter.

@D PHP is case-insensitive when it comes to
calling functions like phpinfo() and print:
print, Print, and PRINT net the same
results. Later in the book you’ll see examples
where case makes a crucial difference.

You can use other functions to send text
to the browser, including echo and printf(),
but this book primarily uses print.

@D You can—and commonly will—use print
over multiple lines:

print "This is a longer
sentence of text.";

The closing quotation mark terminates the
message being printed and the semicolon is
placed only at the end of that line.

Getting Started with PHP 17

Using the PHP Manual

The PHP manual—accessible online at
www.php.net/manual—lists every function
and feature of the language. The manual
is organized with general concepts
(installation, syntax, variables) discussed
first and ends with the functions by topic
(MySQlL, string functions, and so on).

To quickly look up any function in the PHP
manual, go to www.php.net/functionname
in your Web browser (for example, www.
php.net/print).

To understand how functions are
described, look at the start of the print
function’s page @.

The first line is the name of the function
itself, followed by the versions of PHP in
which it’s available. As the language grows,
new functions are added and, occasionally,
older functions are removed. Then there’s
a textual description of the function along
with the function’s basic usage. The usage
is the most important and confusing part.

In this example, the first value, int, says
that print returns an integer value
(specifically, print returns 1, always).

print
(PHP 4, PHP 5)
print — Qutput a string

[=] Description

Report a bug

int print (string garg)

Qutputs arg.

parentheses with its argument list.

print() is not actually a real function (it is a language construct) so you are not required to use

o The PHP manual’s page for the print construct.

18 Chapter1

www.php.net/manual
www.php.net/functionname

Within the parentheses, string $arg
states that the function takes one required
argument, which should be in the form of a
string. You’ve already seen this in action.

As a comparison, check out the manual’s
listing for the n12bx() function @. This
function converts newlines found within
text (the equivalent of pressing Return/
Enter) into HTML break tags. This function,
which returns a string, takes a string as its
first argument and an optional Boolean
(true/false) as its second. Whenever you
see the square brackets, that indicates
optional arguments, which are always
listed last. When a function takes multiple
arguments, they are separated by commas.
Hence, this function can be called like so:

nl2br("Some text");
nl2br("Some text", false);

As the definition also indicates, the second
argument has a default value of true,
meaning it'll create XHTML <bxr /> tags
unless the function is passed a second
argument value of false. In that case, the
function will create HTML <bx> tags instead.

If you're ever confused by a function or
how it is properly used, check the PHP
manual’s reference page for it.

ni2br

(PHP 4, PHP 5)

[=] Description

nl2br — Inserts HTML line breaks before all newlines in a string

Report a bug

‘ string nl2br (string $string [, bool $is_xhtml = true])

Returns string with '
' or '
' inserted before all newlines.

OThe PHP manual’s page for the n12bx() function.

Getting Started with PHP 19

To look up a function definition:

1. Head to www.php.net/functionname in
your Web browser.

If the PHP manual doesn’t have a
matching record for the function you
tried, check the spelling or look at the
recommended alternatives that the
manual presents @.

2. Compare the versions of PHP that the
function exists in with the version of
PHP you’re using.

Use the phpinfo() function, already
demonstrated, to know for certain
what version of PHP you are running.
If a function was added in a later
version of PHP, you’ll either need to
upgrade the version you have or use
a different approach.

3. Examine what type of data the
function returns.

Sometimes you may be having a
problem with a function because it
returns a different type of value than
you expect it to.

PHP Function List

Sorry, but the function n2br is not in the online manual. Perhaps you misspelled it, or it is a relatively new function that hasn't made it
into the online documentation yet. The following are the 20 functions which seem to be closest in spelling to n2br (really good matches
are in bold). Perhaps you were looking for one of these:

ni2br besart long2ip
png2wbmp finfo buffer bzerrno
atan2 icony_substr natsort
mongodbref bzerror opendir
substr .

hebrev deg?rad maongodh
bzread scandir

If you want to search the entire PHP website for the string "n2br", then click here.

For a quick overview over all documented PHP functions, click here.

G The manual will present alternative functions if the entered URL doesn’t directly match a reference.

20 Chapter1

www.php.net/functionname

4. Examine how many and what types
of arguments the function requires or
can take.

The most common mistake when using
functions is sending the wrong number
or type of arguments when the function
is called.

5. Read the user comments, when pres-
ent, to learn more.

Sometimes the user comments can be
quite helpful (other times not).

@D If you see a message saying that a
function has been deprecated 0, that means
the function will be dropped from future
versions of PHP and you should start using the
newer, better alternative (there almost always
is one, and it will be identified).

ereg
(PHP 4, PHP 5)

ereg — Regular expression match

[=] Description Report a bug

int ereg (string $pattern , string $string [, array &$regs 1)

Searches a string for matches to the regular expression given in pattern in a case-sensitive way.

Warning

This function has been DEPRECATED as of PHP 5.3.0. Relying on this
feature is highly discouraged.

0 Deprecated functions should be avoided in your code.

Getting Started with PHP 21

Sending HTML to
the Browser

As those who first learned HTML quickly
discovered, viewing plain text in a Web
browser leaves a lot to be desired. Indeed,
HTML was created to make plain text more
appealing and useful. Because HTML
works by adding tags to text, you can

use PHP to also send HTML tags to the
browser, along with other data:

print "Hello, world!";

There is one situation where you have

to be careful, though. HTML tags that
require double quotation marks, like

link, will cause
problems when printed by PHP, because
the print function uses quotation marks
as well @:

print "link";

One workaround is to escape the
quotation marks within the HTML by
preceding them with a backslash (\):

print "link";
By escaping each quotation mark within the
print statement, you tell PHP to print the
mark itself instead of treating the quotation

mark as either the beginning or end of the
string to be printed.

To send HTML to the browser:

1. Open the hello.php script (Script 1.3)
in your text editor or IDE, if it is not
already open.

2. Edit the Hello, world! text on line 11
by adding HTML tags, making it read
(Script 1.4) as follows:
print "<span style=\"font-weight:

bold;\">Hello, world!";

Parse error: syntax error, unexpected T_STRING in
/Users/larryullman/Sites/phpvgsd/hello.php on line 11

0 Attempting to print double quotation marks
will create errors, as they conflict with the print
statement’s primary double quotation marks.

Script 1.4 With the print function, you can send
HTML tags along with text to the browser, where
the formatting will be applied.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtm11/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />

6 <title>Hello, World!</title>

7 </head>

8 <body>

9 <p>The following was created by PHP:

10 <?php

11 print "<span style=\"font-weight:
bold;\">Hello, world!";

2 >

13 </p>
14 </body>
15 </html>

22 Chapter1

ann Hello, World! To make the PHP-generated part of
the message stand out, CSS styling

The following was created by PHP: Hello, world! will embolden the greeting. For this to
0 The new version of the Hello, world! page, with work, yo.u r.nUSt escape the quotation
a little more decoration and appeal. marks within the span tag so that they
don’t conflict with the print statement’s
quotation mark.

3. Save the script as hello2.php, place it
on your PHP-enabled server, and run
the page in your browser @.

continues on next page

Using White Space

When you’re programming in PHP, you should understand that white space is generally (but not
universally) ignored. Any blank line (just one or several in a row) in PHP code is irrelevant to the
end result. Likewise, tabs and spaces are normally inconsequential to PHP. And as PHP code is not
visible in the Web browser (unless there’s a problem with the server), white space in your PHP files
has no impact on what the end user sees.

The spacing of HTML code shows up in the HTML source of a Web page but has only a minimal
effect on what’s viewed in the Web browser. For example, all of a Web page’s HTML source code
could be placed on one line without changing what the end user sees. If you had to hunt for a
problem in the HTML source, however, you would not like the long, single line of HTML. You can
affect the spacing of dynamically generated HTML code by printing it in PHP over multiple lines,
or by using the newline character (\n) within double quotation marks:

print "Line 1\nLine 2";

Again, use of the newline character affects the HTML source code of the Web page, not what the
end user will see rendered in the browser.

To adjust the spacing in the rendered Web page, you'll use CSS, plus paragraph, div, and break
tags, among others.

Getting Started with PHP 23

4. View the HTML page source to see the
code that was sent to the browser @.

How you do this depends upon the
browser: select View > Page Source
in Firefox, View > Source in Internet
Explorer, or View > View Source in Safari.

This is a step you'll want to be in the
habit of taking, particularly when
problems occur. Remember that PHP is
primarily used to generate HTML, sent
to and interpreted by the Web browser.
Often, confirming what was sent to the
Web browser (by viewing the source)
will help explain the problem you're
seeing in the browser’s interpretation
(or visible result).

Understanding the role of quotation
marks and how to escape problematic charac-
ters is crucial to programming with PHP. These
topics will be covered in more detail in the
next two chapters.

The HTML you send to the Web browser
from PHP doesn’t need to be this simple.
You can create tables, JavaScript, and much,

much more.

Remember that any HTML outside of the
PHP tags will automatically go to the browser.
Within the PHP tags, print statements are
used to send HTML to the Web browser.

006 Source of http://phpvgs4:8888/hello2.php

<!DOCTYPE html PUBLIC "-//W3C//DTD ¥HTML 1.8 Tronsitionals/EN"
"https /A w3 org, TRAxhtn [1/DTD hEml1-transitional .dbd"=

itml xmlns="http:/Awww . w3 org /1999 xhtml" xml:lang="en" lang="en"=

ead=
eta http-equiv="content-type" content="text/html; chorset=utf-g8" /-
<title=Hello, World! < title=

</head=

<hody=

«p=The following was created by PHP:

wspan sty le="font-weight: bold;"=Hello, world!</spanz—=/p=

= hody=

<‘html=

@The resulting HTML source code of hello2.php () on page 22.

24 Chapter1

Adding Comments
to Scripts

Comments are integral to programming,
not because they do anything but because
they help you remember why you did
something. The computer ignores these
comments when it processes the script.
Furthermore, PHP comments are never
sent to the Web browser and therefore
remain your secret.

PHP supports three ways of adding
comments. You can comment out one line
of code by putting either // or # at the
beginning of the line you want ignored:

// This is a comment.

You can also use // or # to begin a
comment at the end of a PHP line, like so:

print "Hello"; // Just a greeting.

Although it’s largely a stylistic issue, // is
much more commonly used in PHP than #.

You can comment out multiple lines by
using /* to begin the comment and */ to
conclude it:

/* This is a

multi-line comment. */

Some programmers also prefer this
comment style as it contains both open
and closing “tags,” providing demarcation
for where the comment begins and ends.

Getting Started with PHP 25

To add comments to a script:

1.

Open the hello2.php (Script 1.4) in your
text editor or IDE.

. After the initial PHP tag, add some com-

ments to your script (Script 1.5):
/*

*Filename: hello3.php

*Book reference: Script 1.5

*Created by: Larry Ullman

*/
This is just a sample of the kind of
comments you can write. You should
document what the script does, what
information it relies on, who created it,
when, and so forth. Stylistically, such
comments are often placed at the top of
a script (as the first thing within the PHP

section, that is), using formatting like this.

The extra asterisks aren’t required; they
just draw attention to the comments.

. Online 17, in front of the print

statement, type //.

By preceding the print statement
with two slashes, the function call is
“commented out,” meaning it will never
be executed.

. After the closing PHP tag (on line 19),

add an HTML comment:
<!-- This is an HTML comment. -->

This line of code will help you
distinguish among the different
comment types and where they appear.
This comment will only appear within
the HTML source code.

. Save the script as hello3.php, place it

on your PHP-enabled server, and run
the page in your Web browser @.

Script 1.5 PHP and HTML comments are added
to the script to document it and to render a line of
PHP code inert.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />

6 <title>Hello, World!</title>

7 </head>

8 <body>

9 <p>The following was created by PHP:

10 <?php

11 /*

12 * Filename: hello3.php

13 * Book reference: Script 1.5

14 * Created by: Larry Ullman

15 */

16

17 //print "<span style=\"font-weight:
bold;\">Hello, world!\n";

18

9 »

20 <!-- This is an HTML comment. -->
21 </p>

22 </body>

23 </html>

A no Hello, World!

The following was created by PHP:

o With the print statement commented out, the
page looks just as it would if the print function
weren’t there.

26 Chapter1

6. View the source of the page to see the
HTML comment @.

@D You can comment out just one line of
code or several using the /* and */ method.
With // or #, you can negate only one line at

a time.

Different programmers prefer to com-
ment code in different ways. The important
thing is to find a system that works for you

and stick to it.

@D Note that you cannot use HTML comment
characters (<!-- and -->) within PHP to com-
ment out code. You could have PHP print those
tags to the browser, but in that case you’d
create a comment that appeared in the HTML
source code on the client’s computer (but not
in the browser window). PHP comments never
make it as far as a user’s computer.

@D Despite my strong belief that you can’t
over-comment your scripts, the scripts in this
book aren’t as documented as they should
be, in order to save space. But the book will
document each script’s name and number, for
cross-reference purposes.

When you change a script’s code, be cer-
tain to update its comments as well. It’s quite
confusing to see a comment that suggests a
script or a line of code does something other
than what it actually does.

[NN Source of http://phpvgs4:8888/hello3.php

<!DOCTYPE html PUBLIC "-//W3C//DTD ¥HTHL 1.8 Transitional//EN"
"http s/ Awww w3 org /TR =hEm LLADTD =htmll-transitional .dbd" =

itml zmlns="http i/ Awww w3 org /1999 =html" =nl:lang="en" lang="en"=

<ead>
<meta http-equiv="content-type" content="text/html; charset=utf-g8" /=
<titlexHello, World!</titles

<'head=

“Hody=

<p=The following wos created by PHP: <br /=

<l—— This iz an HTML comment. --=

< p=

</'body=

<html=

2

0 HTML comments don’t appear in the Web browser but are in the HTML source.
PHP comments remain in the PHP script on the server.

Getting Started with PHP 27

Basic Debugging Steps

Debugging is by no means a simple
concept to grasp, and unfortunately, it’s
one that is only truly mastered by doing.
The next 50 pages could be dedicated to
the subject and you’d still only be able to
pick up a fraction of the debugging skills
that you’ll eventually acquire and need.

The reason | introduce debugging in

this somewhat harrowing way is that it’s
important not to enter into programming with
delusions. Sometimes code won’t work as
expected, you'll inevitably create careless
errors, and some days you’ll want to pull your
hair out, even when using a comparatively
user-friendly language such as PHP. In short,
prepare to be perplexed and frustrated

at times. I've been coding in PHP since
1999, and occasionally | still get stuck in

the programming muck. But debugging is

a very important skill to have, and one that
you will eventually pick up out of necessity
and experience. As you begin your PHP
programming adventure, | can offer the
following basic but concrete debugging tips.

To debug a PHP script:

m Make sure you’re always running PHP
scripts through a URL!

This is perhaps the most common
beginner’s mistake. PHP code must be
run through the Web server application,
which means it must be requested
through http://something. When you
see actual PHP code instead of the result
of that code’s execution, most likely you’re
not running the PHP script through a URL.

m Know what version of PHP you’re
running.

Some problems will arise from the
version of PHP in use. Before you ever
use any PHP-enabled server, run the
phpinfo.php file (Script 1.2) to confirm
the version of PHP in use.

28 Chapter1

Make sure display_errors is on.

This is a basic PHP configuration
setting (discussed in Appendix A). You
can confirm this setting by executing
the phpinfo() function (just use your
browser to search for display_erroxs
in the resulting page). For security
reasons, PHP may not be set to display
the errors that occur. If that’s the case,
you’ll end up seeing blank pages
when problems occur. To debug most
problems, you’ll need to see the errors,
so turn this setting on while you’re
learning. You'll find instructions for
doing so in Appendix A and Chapter 3,
“HTML Forms and PHP.”

Check the HTML source code.

Sometimes the problem is hidden in
the HTML source of the page. In fact,
sometimes the PHP error message can
be hidden there!

Trust the error message.

Another very common beginner’s
mistake is to not fully read or trust the
error that PHP reports. Although an error
message can often be cryptic and may
seem meaningless, it can’t be ignored.
At the very least, PHP is normally correct
as to the line on which the problem can
be found. And if you need to relay that
error message to someone else (like
when you’re asking me for help), do
include the entire error message!

m Take a break!

So many of the programming problems
I've encountered over the years, and the
vast majority of the toughest ones, have
been solved by stepping away from my
computer for a while. It’s easy to get
frustrated and confused, and in such
situations, any further steps you take are
likely to only make matters worse.

@ These are just some general debug-
ging techniques, specifically tailored to the
beginning PHP programmer. They should
suffice for now, though, as the examples in
this book are relatively simple. More complex
coding requires more advanced debugging
techniques, so my PHP 6 and MySQL 5 for
Dynamic Web Sites: Visual QuickPro Guide
(Peachpit Press, 2007) dedicates a whole
chapter to this subject.

Getting Started with PHP 29

Review and Pursue

New in this edition of the book, each
chapter ends with a “Review and Pursue”
section. In these sections you’ll find
questions regarding the material just
covered and prompts for ways to expand
your knowledge and experience on your
own. If you have any problems with these
sections, either in answering the questions
or pursuing your own endeavors, turn

to the book’s supporting forum (www.
LarryUllman.com/forum/).

Review

m What is HTML? What is XHTML? Name
two differences between HTML and
XHTML.

m What encoding is your text editor or
IDE set to use? Does that match the
encoding specified in your generated
HTML pages?

m What is CSS and what is it used for?

m What file extension should PHP scripts
have for your particular server?

m What is meant by “Web root directory”?
What is the Web root directory for your
server?

m How do you test PHP scripts? What
happens when PHP scripts are not run
through a URL?

m Name two ways comments can be
added to PHP code. Identify some ways
you would use comments.

Pursue

= [f you have access to more than one
server, confirm what version of PHP is
running on another server.

m Create a static HTML page that displays
some information. Then replace some
of the static content with content
created by PHP.

m Create a template to use for your own
work. The template should contain the
HTML shell, the opening and closing
PHP tags, and some basic comments.

= Confirm, using the phpinfo() function,
that display_errors is enabled on
your server. If it’'s not, change your
server’s configuration to enable it (see
Chapter 3 and Appendix A).

m |n subsequent chapters, occasionally
check the PHP manual’s page when a
new function is mentioned in the book.

30 Chapter1

www.LarryUllman.com/forum/
www.LarryUllman.com/forum/

Variables

In the previous chapter, you learned how to

use PHP to send simple text and HTML to In ThiS Chapter
a Web browser—in other words, something

for which you don’t need PHP at all! Don’t What Are Variables?
worry, though; this book will teach you how Variable Syntax

to use print in conjunction with other PHP

Types of Variables
features to do great and useful things with yp

your Web site. Variable Values
To make the leap from creating simple, Understanding Quotation Marks
static pages to dynamic Web applications Review and Pursue

and interactive Web sites, you need vari-

32
36
38

4
45
48

ables. Understanding what variables are,
the types that a language supports, and
how to use them is critical.

This chapter discusses the fundamentals

of variables used in PHP, and later chapters
cover the different types in greater detail.
If you’ve never dealt with variables before,
this chapter will be a good introduction. If
you’re familiar with the concept, then you
should be able to work through this chap-
ter with ease.

What Are Variables?

A variable is a container for data. Once
data has been stored in a variable (or,
stated more accurately, once a variable has
been assigned a value), that data can be
altered, printed to the Web browser, saved
to a database, emailed, and so forth.

Variables in PHP are, by their nature,
flexible: You can put data into a variable,
retrieve that data from it (without affecting
the value of the variable), put new data

in, and continue this cycle as long as
necessary. But variables in PHP are largely
temporary: Most only exist—that is, they
only have a value—for the duration of the
script’s execution on the server. Once
the execution passes the final closing
PHP tag, those variables cease to exist.
Furthermore, after users click a link or
submit a form, they are taken to a new
page that may have an entirely separate
set of variables.

Before getting too deep into the discussion
of variables, let’s write a quick script

that reveals some of PHP’s predefined
variables. These are variables that PHP
automatically creates when a script runs.
Over the course of the book you’ll be
introduced to many different predefined
variables. For this particular example, let’s
look at the predefined $_SERVER variable.
It contains lots of information about the
computer on which PHP is running.

The print_r() function offers an easy way
to display any variable’s value:

print_r($variable_name);

Just provide the name of the variable you’d
like to inspect as a single argument to the

print_x() function (you’ll learn more about
a variable’s syntax throughout this chapter).

32 Chapter 2

Script 21 The print_x() function is called to show
the values stored in the $_SERVER predefined variable.

1

13
14
15
16
17
18

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML

1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"

xml:lang="en" lang="en">

<head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
<title>Predefined Variables</title>

</head>

<body>

<pre>

<?php // Script 2.1 - predefined.php

// Show the value of the $ SERVER
variable:
print_xr ($_SERVER);

>
</pre>
</body>
</html>

To print PHP's predefined variables:

1. Create a new PHP script in your
text editor or IDE, to be named
predefined.php (Script 2.1).

2. Create the initial HTML tags:

<IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Predefined Variables
</title>
</head>
<body>
<pre>

This code repeats the XHTML template
created in the preceding chapter. Within
the body of the page, the <pre> tags
are being used to make the generated
PHP information more legible. Without
using the <pre> tags, the print_x()
function’s output would be quite messy.

3. Add the PHP code:
<?php // Script 2.1 - predefined.php
print_xr($_SERVER);
7>

The PHP code contains just one
function call. The function should be
provided with the name of a variable.

continues on next page

Variables 33

In this example, the variable is $_SERVER,
which is special in PHP. $_SERVER stores
all sorts of data about the server: its
name and operating system, the name
of the current user, information about
the Web server application (Apache,
Abyss, IIS, etc.), and more. It also
reflects the PHP script being executed:
its name, where it’s stored on the
server, and so forth.

Note that you must type $_SERVER exactly
as it is here, in all uppercase letters.

Complete the HTML page:

</pre>
</body>
</html>

Save the file as predefined.php, upload
it to your server (or save it to the appro-
priate directory on your computer), and
test it in your Web browser @.

Once again, remember that you must
run all PHP scripts through a URL (i.e.,
http://something).

Array
{
[HTTE_HOST] => phpvged:8888

[HTTE_ACCED'T LAMGUAGE] => en-ua,en;g=0.5
[HTTD ACCEPT ENCODING] => gzip,deflate

[HTTE KEEP ALIVE] => 115

[HTTE COMNECTION] => keep-alive

[PATH]) => /fusc/bin:/bin:/usc/sbin:/sbin
[SERVER_SIGNATURE] ==

[SERVER_SOFTWARE|] => Apache
[SERVER_MAME] => phpvgsd

[SERVER_ADDR] => 127.0.0.1
[SERVER_FORT) => BBEE

[REMOTE_ANDR] => 127.0.0.1

[SERVER_ADMTN] => youlexample.com

[REMOTE PORT] => 51149
[GATEWAY INTERFACE] => CGI/1.1
[SERVER_PROTOCOL] =» HTTR/1.1
[REQUEST METHOD] => CET
[QUERY_STRING) =>
[REQUEET URI] => /predefined.php
[ECRIPT HAME] => /predefined.php
[PHP_SELF] => /predefined.php
[REQUEST TIME] => 1289811848
[argv] => Array

(

]

[argo] == O

[HTTP_USER_AGENT] => Mozilla/5.0 (Macintosh; U; Intel Mac 08 X 10.6;
[HTTP_ACCEPT] => text/html,application/xhtml+xml,application/xml;q=0

[HTTP ACCEPT CHARSET] => I50-B859-1,utf-8;g=0.7,*;q=0.7

| BOCUMENT _ROOT] => /Users/larrynllman/Sites/phpugsd

[SCRIPT FILEMAME|] => /Users/larryullman/Sites/phpvgsd/predefined.php

O The $_SERVER
variable, as printed out
by this script, is a master
list of values pertaining
to the server and the
PHP script.

34 Chapter 2

6. If possible, transfer the file to another
computer or server running PHP and
execute the script in your Web browser
again Q.

Printing out the value of any variable

as you’ve done here is one of the greatest
debugging tools. Scripts often don’t work

as you expect them to because one or more
variables do not have the values you assume
they should, so confirming their actual values
is extremely helpful.

@D If you don’t use the HTML <pre></pre>
tags, the result will be like the mess in G

Array
{
[HTTE_HOST] => larryullman.com
[HTTP_USER_AGENT] = Muzilla/5.0 (Macintosh; U; Intel Mac 05 X 10_6_5; en-us
|HTTP_ACCEPT| => application/xml,application/xhtml+xml, text/heml qgul_ 4% text/
[HTTF_ACCEPT_LANGUAGE| => en-us
[MTTF_ACCEPT_ENCODING] => gzip, deflate
[HTTP_CONNECTION] => keep-alive
[PATH] => /gbin:/fusrfsbin:/bin:/usr/bin: fusr/X11RE/bin
[SERVER SIGHATURE] =>
Apacha/?.0.63 (Cenrns) Searver ar larryuollman.com Pore &0

[SERVER SOPTWARE] => Apache/2.0.63 (CentOS)
[SERVER_NAMF] => larryullman.com

[SERVER ADDR] => 207.58.187.78
[SERVER_PORT] => 80

[REMOTE_ADDR] => 71.58.97.51

[DOCUMENT _ROGT) =i s i sbbimien i etrirsyues & atetns. 5o hi £ t pdocs
[SERVER_ADMIN] =» Larry@DMCInsightes.com
[SCRIPT_FILENAME] =i oo it suman i strinms aten <o httpdocs /predef ined. php

[REMOTE_PORT] => 44766
(GATEWAY_INTERFACE] => CGI/1.1
[SERVER_PROTOCOL|] => HTTE/1.1
(REQUEST_METHOD| => GET
[QUERY_STRING| =>

(REQUEST_URI] => /predefined.php
[SCRIPT_NAME] => /predefined.php
[EBHF SELF] => /predefined.php
(REQUEST_TTME] => 12R98320A3

0 With the predefined.php page, different servers will generate different
results (compare with Figure 0).

Array ([HTTP_HOST] => phpvysd-8888 [HTTP_USER_AGENT] => Muozilla/5 00 (Macintosh; U; Intel Mac OS X 10.6; en-US; rv: 192 12) Gecko
*:q=0.8 [HTTP_ACCEPT_LANGUAGE] == en-us.en:q=0.5 [HTTP_ACCEPT_ENCODING] => gzipdeflate [HTTP_ACCEPT_CHARSET] =>1
[HTTP_CACHE_CONTROL] => max-age=0 [PATH] => /usr/bin:/bin:/usr/sbin:/sbin [SERVER_SIGNATURE] => [SERVER_SOFTWARE] => Ap
IREMOTE ADDE] => 127.0.0.1 [DOCUMENT ROOUT] => /Users/larryullman/Sites/phpvgs4 |[SERVER ADMIN]| => you@example.com [SCRIP
[GATEWAY_INTERFACE] => CGI/1.1 [SERVER_PROTOCOL] => HTTI¥1.1 [REQUEST_METHOD] => GET [QUERY_STRING] =~ [REQUE
[REQUEST_TIME] => 1289832176 [argv] => Array () [arge] =>0)

G With large, complex variables such as $_SERVER, not using the HTML preformatting tags with print_x()
creates an incomprehensible mess (compare to Figures 0 and D).

Variables 35

Variable Syntax

Now that you’ve had a quick dip in the
variable pool, it’s time to investigate the
subject further. In the preceding example,
the script reported upon PHP’s predefined
$_SERVER variable. You can also create

your own variables, once you understand
the proper syntax. To create appropriate
variable names, you must follow these rules:

m All variable names must be preceded
by a dollar sign ($).

m Following the dollar sign, the variable
name must begin with either a letter
(A—Z, a—z) or an underscore (_). It can’t
begin with a number.

m The rest of the variable name can
contain any combination of letters,
underscores, and numbers.

= You may not use spaces within the
name of a variable. (Instead, the
underscore is commonly used to
separate words.)

m Each variable must have a unique name.

m Variable names are case-sensitive!
Consequently, $variable and
$vVariable are two different constructs,
and it would be a bad idea to use two
variables with such similar names.

This last point is perhaps the most
important: variable names in PHP are case-
sensitive. Using the wrong letter case is a
very common cause of bugs. (If you used,
for example, $_server or $_Server in the
previous script, you’d see either an error
message or nothing at all €.

| Motice: Undefined variable: _server in /Users/larryullman/Sites/phpvgsd/predefined.php on line 13

o Misspelling a variable’s name, including its case, will create undesired and unpredictable results.

36 Chapter 2

Script 2.2 Properly documenting the purposes of
variables, along with using meaningful names, is
a hallmark of a professional programmer.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
6 <title>Variables and Comments</title>
7 </head>
8 <body>
9 <php // Script 2.2

11 // Define my variables....

13 $year = 2011; // The current year.
14 $june_avg = 88; // The average
temperature for the month of June.
15 $page_title = 'Weather Reports’;
// A title for the page.

16

17 // ... and so forth.
18

19

20 </body>

21 </html>

TABLE 2.1 Valid Variables in PHP

Name
$first_name
$person
$address1i
$_SERVER

TABLE 2.2 Invalid Variables in PHP

Name Reason
$first name Has a space
$first.name Has a period
first_name Does not begin with $

$1address A number cannot follow $

To help minimize bugs, | recommend the
following policies:

m Always use all lowercase variable
names.

m Make your variable names descriptive
(e.g., $First_name is better than $Fn).

m Use comments to indicate the purpose
of variables (Script 2.2), redundant as
that may seem.

m Above all, be consistent with whatever
naming convention you choose!

Table 21 lists some sample valid variables;
Table 2.2 lists some invalid variables and
the rules they violate.

Unlike some other languages, PHP
generally doesn’t require you to declare or
initialize a variable prior to use. In other words,
you can refer to variables without first defining
them. But it’s best not to do that; | try to write
my scripts so that every variable is defined or
validated before use.

There are two main variable naming
conventions, determined by how you delineate
words. These are the so-called camel-hump

or camel-case (named because of the way
capital letters break up the word—for example,
$FirstName) and underscore ($first_name)
styles. This book uses the latter convention.

Variables 37

Types of Variables

This book covers the three main PHP
variable types: numbers, strings, and arrays.
I'll introduce them quickly here, and later
chapters will discuss them in more detail:

m Chapter 4, “Using Numbers”
m Chapter 5, “Using Strings”
m Chapter 7, “Using Arrays”

A fourth variable type, objects, is introduced
in Appendix B, “Resources and Next Steps,”
but isn’t covered in this book. That particular
subject is just too advanced for a beginner’s
guide—in fact, basic coverage of the subject
in my PHP 5 Advanced: Visual QuickPro
Guide (Peachpit Press, 2007) requires over
150 pages!

Numbers

Technically speaking, PHP breaks numbers
into two types: integers and floating-point
(also known as double-precision floating-
point or doubles). Due to the lax way

PHP handles variables, it won’t affect your
programming to group the two categories of
numbers into one all-inclusive membership.
Still, let’s briefly discuss the differences
between the two, for clarity’s sake.

The first type of numbers—integers—are
the same as whole numbers. They can be
positive or negative but include neither
fractions nor decimals. Numbers that use a
decimal point (even something like 1.0) are
floating-point numbers. You must also use
floating-point numbers to refer to fractions,
because the only way to express a fraction
in PHP is to convert it to its decimal
equivalent. Hence, 14 is written as 1.25.
Table 2.3 lists some sample valid numbers
and their formal type; Table 2.4 lists invalid
numbers and the rules they violate.

As you’ll soon see, you can quote invalid
numbers to turn them into valid strings.

TABLE 2.3 Valid Numbers in PHP

Number Type

1 Integer

1.0 Floating-point
1972 Integer

19.72 Floating-point
=1 Integer

-1.0 Floating-point

TABLE 2.4 Invalid Numbers in PHP

Number Reason

13 Contains a slash

1996a Contains a letter

08.02.06 Contains multiple
decimals

38 Chapter 2

Strings

A string is any number of characters
enclosed within a pair of either single (")
or double (") quotation marks. Strings
can contain any combination of letters,
numbers, symbols, and spaces. Strings
can also contain variables.

Here are examples of valid string values:

"Hello, world!"

"Hello, $first_name!"

lI1/3ll

'Hello, world! How are you today?'
"08.02.06"

II1996“

That last one is an empty string—a string
that contains no characters.

In short, to create a string, just wrap
something within quotation marks. There
are cases, however, where you may run
into problems. For example:

"I said, "How are you?""

This string will be tricky and | hinted at the
same problem in Chapter 1, “Getting Started
with PHP,” with respect to printing HTML
code. When PHP hits the second quotation
mark in the above, it assumes the string
ends there; the continuing text (How...)
causes an error. To use a quotation mark
within a string you can escape the quotation
mark by putting a backslash (\) before it:

"I said, \"How are you?\

The backslash tells PHP to treat each
escaped quotation mark as part of the
value of the string, rather than using it as
the string’s opening or closing indicators.

You can similarly circumvent this problem
by using different quotation mark types:

'I said, "How are you?"'
"I said, 'How are you?'"

Notice that “1996” converts an integer
into a string, simply by placing the number
within quotes. Essentially, the string contains
the characters 1996, whereas the number (a
nonquoted value) would be equal to 1996.

It’s a fine distinction, and one that won’t
matter in your code, because you can perform
mathematical calculations with the string 1996
just as you can with the number.

@D Chapter 1also demonstrated how to
create a new line by printing the \n charac-
ter within double quotation marks. Although
escaping a quotation mark prints the quota-
tion mark, escaping an n prints a new line,
escaping an r creates a carriage return, and
escaping a t creates a tab.

@D Understanding strings, variables, and the
single and double quotation marks is critical
to programming with PHP. For this reason, a
section at the end of this chapter is dedicated
to the subject.

Variables 39

Arrays

Arrays are covered more thoroughly in
Chapter 7, but let’s look at them briefly here.
Whereas a string or a number contains a
single value (both are said to be scalar),

an array can have more than one value
assigned to it. You can think of an array as
a list or table of values: you can put multiple
strings and/or numbers into one array.

Arrays use keys to create and retrieve
the values they store. The resulting
structure—a list of key-value pairs—looks
similar to a two-column spreadsheet.
Unlike arrays in other programming
languages, the array structure in PHP is
so flexible that it can use either numbers
or strings for both the keys and the
values. The array doesn’t even need to be
consistent in this respect. (All of this will
make more sense in Chapter 7, when you
start working with specific examples.)

PHP has two different types of arrays,
based on the format of the keys. If the array
uses numbers for the keys (Table 2.5), it's
called an indexed array. If it uses strings

for the keys (Table 2.6), it's an associative
array. In either case, the values in the array
can be of any variable type (string, number,
and so on).

The array’s key is also called its
index. You’'ll see these two terms used
interchangeably.

An array can, and frequently will, contain
other arrays, creating what is called a multi-
dimensional array.

What PHP calls an associative array
is called a hash in Perl and Ruby, among
other languages.

TABLE 2.5 Indexed Array

Key
0

1

2

3

Value
Don
Betty
Roger

Jane

TABLE 2.6 Associative Array

Key
VT
NH
IA
PA

Value

Vermont

New Hampshire
lowa

Pennsylvania

40 Chapter 2

Humber is 1
String is Hello, world!

o The result of printing the values of
two variables.

_SERVER is Array

o Using the print
statement on a complex
variable type, such as an
array, will not have the
results you desire.

Variable Values

To assign a value to a variable, regardless
of the variable type, you use the equals
sign (=). Therefore, the equals sign is
called the assignment operator, because
it assigns the value on the right to the
variable on the left. For example:

$number = 1;
$floating_number = 1.2;
$string = "Hello, world!";

As each of these lines represents a complete
statement (i.e., an executable action), they
each conclude with a semicolon.

To print out the value of a variable, you can
use the print function:

print $number;
print $string;

If you want to print a variable’s value within
a context, you can place the variable’s
name in the printed string, as long as you
use double quotation marks (AR

print "Number is $number";
print "String is $string";

Using print in this way works for the
scalar (single-valued) variable types—
numbers and strings. For complex variable
types—arrays and objects—you cannot just
use print ©:

print "SERVER is $_SERVER";

As you've already seen, print_x() can
handle these nonscalar types, and you’ll
learn other approaches later in the book.

continues on next page

Variables 41

Whether you’re dealing with scalar or
nonscalar variables, don’t forget that
printing out their values is an excellent
debugging technique when you’re having
problems with a script!

Because variable types aren’t locked in
(PHP is referred to as a weakly typed
language), they can be changed on the fly:

$variable = 1;
$variable = "Greetings";

If you were to print the value of $variable
now, the result would be Greetings. The
following script better demonstrates the
concept of assigning values to variables
and then accessing those values.

To assign values to and
access variables:

1. Create a new PHP script in your
text editor or IDE, to be named
variables.php (Script 2.3).

2. Create the initial HTML tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Variables</title>
</head>
<body>

Script 2.3 Some basic variables are defined and
their values printed by this script.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"

2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">
<head>

5 <meta http-equiv="Content-Type"

content="text/html; charset=utf-8"/>

6 <titlesVariables</title>

7 </head>

8 <body>

9 <?php // Script 2.3 - variables.php

11 // An address:

12 $street = "100 Main Street";
13 $city = "State College";

14 $state = "PA";

15 $zip = 16801;

17 // Print the address:
18 print "<p>The address is:
$street

$city $state $zip</p>";

19

20 >

21 </body>
22 </html>

42 Chapter 2

3. Begin the PHP code:
<?php // Script 2.3 - variables.php
4. Define some number and string variables:

$street = "100 Main Street";
$city = "State College";
$state = "PA";

$zip = 16801;

These lines create four different variables
of both string and number types. The
strings are defined using quotation
marks, and each variable name follows
the syntactical naming rules.

Remember that each statement must
conclude with a semicolon and that the
variable names are case-sensitive.

5. Print out the values of the variables
within some context:

print "<p>The address is:

$street
$city $state
$zip</p>";

Here a single print statement can
access all the variables. The entire
string to be printed (consisting of text,
HTML tags, and variables) is enclosed
within double quotation marks. The
HTML
 tags make the text flow
over multiple lines in the browser
window (remember, the extra space and
slash in the break tag are there for sake
of XHTML compliance).

continues on next page

Variables 43

6. Complete the PHP section and the
HTML page:

7>
</body>
</html>

7. Save the file as variables.php, upload
it to your server (or save it to the appro-
priate directory on your computer), and
test it in your Web browser 0.

If you see a parse error () when you
run this script, you probably either omitted
a semicolon or have an imbalance in your
quotation marks.

If one of the variable’s values isn’t
printed out or you see an Undefined variable
error @, you most likely failed to spell a vari-
able name the same way twice.

If you see a blank page, you most likely
have an error but PHP’s display_errors
configuration is set to off. See Chapter 3,
“HTML Forms and PHP,” for details.

8006

Variables

The address is:
100 Main Street
State College PA 16801

@ Some variables are assigned values,
and then printed within a context.

Parse error: syntax error, unexpected T_VARIABLE in
fUsers/larryullman/Sites/phpvqs4/variables.php on linc 15

0 Parse errors are the most common type of
PHP error, as you'll discover. They’re frequently
caused by missing semicolons or an imbalance
of quotation marks or parentheses.

800 Variables

Notice: Undefined variable: Street in
fUsers/larryullman/Sites/phpvqs4/variables.php on line 18

The address is:

State College PA 16801

G The Undefined variable error indicates that
you used a variable with no value (it hasn’t been
defined). This can happen with misspellings and
capitalization inconsistencies.

44 Chapter 2

Script 2.4 This script simply demonstrates how
the type of quotation mark you use with variables
affects the end result.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/xhtml"
xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="content-type"
content="text/html; charset=utf-8" />
6 <title>Quotes</title>
7 </head>
8 <body>
9 <?php // Script 2.4 - quotes.php

11 // Single or double quotation marks
won't matter here:

12 $first_name = 'Larry';
13 $last_name = "Ullman";
14

15 // Single or double quotation marks DOES
matter here:

16 $namel = '$first_name $last_name';
17 $name2 = "$first_name $last_name";
18

19 // Single or double quotation marks DOES
matter here:

20 print "<hi>Double Quotes</hi><p>namel
is $name1l

21 name2 is $name2</p>";

22

23 print '<h1>Single Quotes</hi><p>name1
is $name1l

24 name2 is $name2</p>';

25

26

27 </body>
28 </html>

Understanding
Quotation Marks

Now that you know the basics of variables
and how to create them, | want to make
sure you completely understand how to
properly use quotation marks. PHP, like
most programming languages, allows

you to use both double (") and single

(") quotation marks—but they give vastly
different results. It’s critical that you
comprehend the distinction, so the next
example will run tests using both types.

The rule to remember is: Items within
single quotation marks are treated
literally; items within double quotation
marks are extrapolated. This means
that within double quotation marks, a
variable’s name is replaced with its value,
as in Script 2.3, but the same is not true
for single quotation marks.

This rule applies anywhere in PHP you might
use quotation marks, including uses of the
print function and the assignment of values
to string variables. An example is the best
way to demonstrate this critical concept.

To use quotation marks:

1. Begin a new PHP script in your text
editor or IDE, to be named quotes.php
(Script 2.4).

2. Create the initial HTML tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmla/
DTD/xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">

continues on next page

Variables 45

<head>
<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />
<title>Quotes</title>
</head>
<body>

. Begin the PHP code:
<?php // Script 2.4 - quotes.php
. Create two string variables:

$first_name = 'Larry';
$last_name = "Ullman";

It doesn’t matter whether you use single
or double quotation marks for these two
variables, as each string can be treated
literally. However, if you’re using your
own name here (and feel free to do so)
and it contains an apostrophe, you’ll
need to either use double quotation
marks or escape the apostrophe within
single quotation marks:

$last_name "0'Toole";
$last_name = 'O\'Toole’;

. Create two different name variables,
using the existing first- and last-name
variables:

$name1 = '$first_name $last_name';
$name2 = "$first_name
$last_name";

In these lines it makes a huge
difference which quotation marks you
use. The $name1 variable is now literally
equal to $first_name $last_name,
because no extrapolation occurs.
Conversely, $name2 is equal to Larry
Ullman, presumably the intended result.

. Print out the variables using both types

of quotation marks:

print "<hi>Double Quotes
</hi><ps>name1 is $name1l

name2 is $name2</p>";

print '<h1>Single Quotes
</hi><ps>name1 is $name1l

name2 is $name2</p>';

Again, the quotation marks make all

the difference here. The first print
statement, using double quotation marks,
prints out the values of the $name1 and
$name2 variables, whereas the second,
using single quotation marks, prints out
$namet and $name?2 literally.

The HTML in the print statements
makes them more legible in the
browser, and each statement is
executed over two lines, which is
perfectly acceptable.

. Complete the PHP section and the

HTML page:
7>

</body>
</html>

46 Chapter 2

ano Quotes

Double Quotes

namel is $first_name $last_name
name2 is Larry Ullman

Single Quotes

namel is $namel
name? is $Sname?2

0 The different quotation marks
(single versus double) dictate whether

the variable’s name or value is printed.

8. Save the file as quotes.php, upload it to
your server (or save it to the appropri-
ate directory on your computer), and
test it in your Web browser @.

@D If you’re still confused about the
distinction between the two types of quotation
marks, stick with double quotation marks and
you’ll be safer.

@D Arguably, using single quotation marks
when you can is marginally preferable, as PHP
won’t need to search the strings looking for
variables. But, at best, this is a minor point.

The shortcuts for creating newlines (\n),
carriage returns (\x), and tabs (\t) must also
be used within double quotation marks to
have the desired effect.

Remember that you don’t always need to
use quotation marks at all. When assigning a
numeric value or when only printing a variable,
you can omit them:

$num = 2;
print $num;

Variables 47

Review and Pursue

If you have any problems with the review
questions or the pursue prompts, turn

to the book’s supporting forum (www.
LarryUllman.com/forum/).

Review

What kind of variable is $_SERVER an
example of?

What character must all variables
begin with?

What characters can be used first in a
variable’s name? What other characters
can be used in a variable’s name, after
the first character?

Are variable names case-sensitive or
case-insensitive?

What does it mean to say that a variable
is scalar? What are examples of scalar
variable types? What is an example of a
nonscalar variable type?

What is the assignment operator?

What great debugging technique—with
respect to variables—was introduced in
this chapter?

What is the difference between using
single or double quotation marks?

Pursue

Create another PHP script that defines
some variables and prints their values.
Try using variables of different scalar
types.

Create a PHP script that prints the value
of some variables within some HTML.
More sophisticated practice might
involve using PHP and variables to
create a link or image tag.

48 Chapter 2

www.LarryUllman.com/forum/
www.LarryUllman.com/forum/

TML
anad

The previous chapter provided a brief intro-
duction to the topic of variables. Although
you’ll often create your own variables, you’ll
also commonly use variables in conjunction
with HTML forms. Forms are a fundamental
unit of today’s Web sites, enabling such
features as registration and login systems,
search capability, and online shopping.
Even the simplest site will find logical rea-
sons to incorporate HTML forms. And with
PHP, it’'s stunningly simple to receive and
handle data generated by them.

With that in mind, this chapter will cover
the basics of creating HTML forms and
explain how the submitted form data is
available to a PHP script. This chapter will
also introduce several key concepts of real
PHP programming, including how to man-
age errors in your scripts.

-Orms

PHP

In This Chapter

Creating a Simple Form
Choosing a Form Method
Receiving Form Data in PHP
Displaying Errors

Error Reporting

Manually Sending Data to a Page

Review and Pursue

50
54
57
61
64
67
72

Creating a
Simple Form

For the HTML form example in this chapter,
you’ll create a feedback page that takes
the user’s salutation, name, email address,
response, and comments 0. The code that
generates a form goes between opening
and closing form tags:

<form>
form elements
</form>

The form tags dictate where a form begins
and ends. Every element of the form must
be entered between these two tags. The
opening form tag also contains an action
attribute. It indicates the page to which the
form data should be submitted. This value
is one of the most important considerations
when you’re creating a form. In this book,
the action attributes will always point to
PHP scripts:

<form action="somepage.php">

Before creating this next form, let’s briefly
revisit the topic of XHTML. As stated in

the first chapter, XHTML has some rules
that result in a significantly different syntax
than HTML. For starters, the code needs
to be in all lowercase letters, and every
tag attribute must be enclosed in quotes.
Further, every tag must be closed; those
that don’t have formal closing tags, like
input, are closed by adding a blank space
and a slash at the end. Thus, in HTML you
might write

<INPUT TYPE=TEXT NAME=address
SIZE=40>

but in XHTML you’d write

<input type="text" name="address"
size="40" />

Please complete this form to submit your feedback:

Name: [mr. -:]

Email Address:

Response: This is... O excellent O okay O boring

Comments:

T —————
Send My Feedback

0 The HTML form that will be used in this
chapter’s examples.

50 Chapter 3

Script 3.1 This HTML page has a form with several

different input types.

1

v

O 0o ~N O

11
12
13
14
15
16
17
18

19
20

21
22
23

24

25

26
27

28
29

30
31
32
33
34

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
<title>Feedback Form</title>
</head>
<body>
<l-- Script 3.1 - feedback.html -->
<div><p>Please complete this form to
submit your feedback:</p>

<form action="handle_form.php">

<p>Name: <select name="title">
<option value="Mr.">Mr.</option>
<option value="Mrs.">Mrs.</option>
<option value="Ms.">Ms.</option>
</select> <input type="text"
name="name" size="20" /></p>

<p>Email Address: <input
type="text" name="email"
size="20" /></p>

<p>Response: This is...

<input type="radio"

name="response" value="excellent" />
excellent

<input type="radio"
name="response" value="okay" />
okay

<input type="radio"
name="response" value="boring" />
boring</p>

<p>Comments: <textarea
name="comments" rows="3"
cols="30"></textarea></p>

<input type="submit" name="submit"
value="Send My Feedback" />

</form>
</div>
</body>
</html>

Hopefully this quick explanation will help you
understand the XHTML in the following script.

Finally, in both HTML and XHTML, each
form element needs to have its own
unique name. Stick to a consistent naming
convention when naming elements, using
only letters, numbers, and the underscore
(_). The result should be names that are
also logical and descriptive.

To create a basic HTML form:

1. Begin a new document in your text edi-
tor or IDE, to be named feedback.html
(Script 3.1):

<IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmla/
DTD/xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Feedback Form</title>
</head>
<body>
<l-- Script 3.1 - feedback.html -->
<div><p>Please complete this form
to submit your feedback:</p>

2. Add the opening form tag:
<form action="handle_form.php">

The form tag indicates that this form will
be submitted to the page handle_form.
php, found within the same directory as
this HTML page. You can use a full URL
to the PHP script, if you’d prefer to be
explicit (e.g., http://www.example.com/
handle_form.php).

continues on next page

HTML Forms and PHP 51

http://www.example.com/handle_form.php
http://www.example.com/handle_form.php

3. Add a select menu plus a text input for

" -
the person’s name: Name: | Mr. '.ni

<p>Name: <select name="title"> Email 4Mrs-
<option value="Mr.">Mr.</option> Ms.

<option value="Mrs.">Mrs.</option>
<option value="Ms.">Ms.</option>
</select> <input type="text"
name="name" size="20" /></p>

0 The select element creates a drop-down
menu of options.

The inputs for the person’s name will
consist of two elements (). The first is
a drop-down menu of common titles:
Mr., Mrs., and Ms. Each option listed
between the select tags is an answer
the user can choose @. The second
element is a basic text box for the
person’s full name.

4. Add a text input for the user’s email
address:

<p>Email Address: <input
type="text" name="email"
size="20" /></p>

5. Add radio buttons for a response:

<p>Response: This is...

<input type="radio" name="response"
value="excellent" /> excellent

<input type="radio" name="response"
value="okay" /> okay

<input type="radio" name="response"
value="boring" /> boring</p>

This HTML code creates three radio
buttons (clickable circles, 9). Because
they all have the same name value, only
one of the three can be selected at a
time. Per XHTML rules, the code is in
lowercase except for the values, and an
extra space and slash are added to the
end of each input to close the tag.

52 Chapter 3

6. Add a textarea to record the comments: Note that feedback.html uses the

HTML extension because it’s a standard

Comments: <textarea

P> " < " e HTML page (not a PHP script). You could
name="comments” rows="3 use the .php extension without a problem,
cols="30"></textarea></p> even though there’s no actual PHP code.

(Remember that in a PHP page, anything

A textarea gives users more space to
9 P not within the PHP tags—<?php and ?>—is

enter their comments than a text input assumed to be HTML.)
would. However, the text input lets
you limit how much information users Be certain that your action attribute

correctly points to an existing file on the
server, or your form won’t be processed prop-
erly. In this case, the form will be submitted to

can enter, which you can’t do with the
textarea (not without using JavaScript,

that is). When you're creating a form, handle_form.php, to be located in the same

choose input types appropriate to the directory as the feedback.html page.

information you wish to retrieve from

the user. @D In this example, an HTML form is created
by hand-coding the HTML, but you can do

Note that a textarea does have a this in a Web page application (such as Adobe

closing tag. Dreamweaver) if you’re more comfortable with

that approach.
7. Add the submit button:

@D One welcome addition in the forthcom-

ing HTML 5 specification are new form ele-
value="Send My Feedback" /> ments, such as email, url, and number.

The value attribute of a submit element

is what appears on the button in the

Web browser . You could also use

Go! or Submit, for example.

<input type="submit" name="submit"

8. Close the form:
</form>
9. Complete the page:

</div>
</body>
</html>

10. Save the page as feedback.html and
view it in your browser.

Because this is an HTML page, not a
PHP script, you could view it in your Web
browser directly from your computer.

HTML Forms and PHP B3

Choosing a Form
Method

The experienced HTML developer will
notice that the feedback form just created
is missing one thing: The initial form tag
has no method attribute. The method
attribute tells the server how to transmit
the data from the form to the handling
script.

You have two choices with method: GET
and POST. With respect to forms, the dif-
ference between using GET and POST is
squarely in how the information is passed
from the form to the processing script. The
GET method sends all the gathered infor-
mation along as part of the URL. The POST
method transmits the information invisibly
to the user. For example, upon submitting
a form, if you use the GET method, the
resulting URL will be something like

http://www.example.com/page.php?
some_var=some_value&age=208&...

Following the name of the script, page.php, is a
question mark, followed by one name=value
pair for each piece of data submitted.

When using the POST method, the end
user will only see

http://www.example.com/page.php

When deciding which method to use, keep
in mind these four factors:

m With the GET method, a limited amount
of information can be passed.

m The GET method sends the data to the
handling script publicly (which means,
for example, that a password entered
in a form would be viewable by anyone
within eyesight of the Web browser,
creating a larger security risk).

Confirm
To display this page, Firefox must send information that
will repeat any action (such as a search or order

confirmation) that was performed earlier.

:’ Cancel :} (Resend j

0 If users refresh a PHP script that data has been
sent to via the POST method, they will be asked to
confirm the action (the specific message will differ
using other browsers).

54 Chapter 3

http://www.example.com/page.php?
http://www.example.com/page.php

Script 3.2 The method attribute with a value of
post is added to complete the form.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
<title>Feedback Form</title>
</head>
<body>
<l-- Script 3.2 - feedback.html -->
10 <div><p>Please complete this form to
submit your feedback:</p>

(%]

O N O

11
12 <form action="handle_form.php"
method="post">

13

14 <p>Name: <select name="title">

15 <option value="Mr.">Mr.</option>

16 <option value="Mrs.">Mrs.</option>

17 <option value="Ms.">Ms.</option>

18 </select> <input type="text"
name="name" size="20" /></p>

19

20 <p>Email Address: <input type="text"
name="email" size="20" /></p>

21

22 <p>Response: This is...

23 <input type="radio" name="response"
value="excellent" /> excellent

24 <input type="radio" name="response"
value="okay" /> okay

25 <input type="radio" name="response"
value="boring" /> boring</p>

26

27 <p>Comments: <textarea name="comments"
Tows="3" cols="30"></textarea></p>

28

29 <input type="submit" name="submit"
value="Send My Feedback" />

30

31 </form»

32 </div>

33 </body>

34 </html>

m A page generated by a form that used
the GET method can be bookmarked,
but one based on POST can’t be.

m Users will be prompted if they attempt
to reload a page accessed via POST @,
but will not be prompted for pages
accessed via GET.

Generally speaking, GET requests are
used when asking for information from the
server. Search pages almost always use
GET (check out the URLs the next time
you use a search engine), as do sites that
paginate results (like the ability to browse
categories of products). Conversely, POST
is normally used to trigger a server-based
action. This might be the submission of a
contact form (result: an email gets sent)

or the submission of a blog’s comment
form (result: a comment is added to the
database and therefore the page).

This book uses POST almost exclusively for
handling forms, although you’ll also see a
useful technique involving the GET method
(see “Manually Sending Data to a Page” at
the end of this chapter).

To add a method to a form:

1. Open feedback.html (Script 3.1)
in your text editor or IDE, if it is not
already open.

2. Within the initial form tag, add
method="post" (Script 3.2, line 12).

The form’s method attribute tells the
browser how to send the form data to
the receiving script. Because there may
be a lot of data in the form’s submission
(including the comments), and because
it wouldn’t make sense for the user to
bookmark the resulting page, POST is
the logical method to use.

continues on next page

HTML Forms and PHP 55

3. Save the script and reload it in your
Web browser.

It's important that you get in the habit
of reloading pages in the Web browser
after you make changes. It's quite easy
to forget the reloading step and find
yourself flummoxed when your changes
are not being reflected.

4. View the source of the page to make
sure all the required elements are pres-
ent and have the correct attributes @.

In the discussion of the methods, GET
and POST are written in capital letters to make
them stand out. However, the form in the script
uses post for XHTML compliance. Don’t worry
about this inconsistency (if you caught it at
all)—the method will work regardless of case.

. 1.0 Transitional, v

<IDOCTYPE hétml PUBLIC "=//F

"http://www.w3.org/ ._A“LT;'—L‘a”u-L¢Ohﬂ; dtd">
<html xmlns="http://www. W3- org!lBBBIxhtml xml:lang="en" lang="en">
<head>
<meta http-egquiv="Content-Type" content="text/html; charset=utf-g"/>
<title>Feedback Form</title>
</head>
<body>
<{-- Script 3.2 - feedback.html -->

<div><p>FPlease complete this form to submit your feedback:</p>
<form actiomn="handle_form.php" methed="post">

<p>Name: <select name="title">

<option value="Mr.">Mr.</option>

<option value="Mrs.">Mrs.</option>

<option value="Ms.">Ms.</option>

</select> <input type="text" name="name" size="20" /></p>

<p>Email Address: <input type="text" name="email" size="20" /></p>

<p>Response: This is...

<input type="radic" name="response" value="excellent" /> excellent
<input type="radio" name="response" wvalue="okay" /> okay

<input type="radic" name="response" value="boring” /> boring</p=>

<p>Comments: <textarea name="comments" rows="3" eols="30"></textarea></p>
<input type="submit" name="submit" value="Send My Feedback" />

</ form>

</div>

</body>
</html>

0 With forms, much of the important information, such as the action and method values or
element names, can only be seen within the HTML source code.

56 Chapter 3

Receiving Form
Data in PHP

Now that you’ve created a basic HTML
form capable of taking input from a usetr,
you need to write the PHP script that will
receive and process the submitted form
data. For this example, the PHP script will
simply repeat what the user entered into
the form. In later chapters, you’ll learn how
to take this information and store itin a
database, send it in an email, write it to

a file, and so forth.

To access the submitted form data, you need
to refer to a particular predefined variable.
Chapter 2, “Variables,” already introduced
one predefined variable: $_SERVER. When

it comes to handling form data, the specific
variable the PHP script would refer to is
either $_GET or $_POST. If an HTML form uses
the GET method, the submitted form data
will be found in $_GET. When an HTML form
uses the POST method, the submitted form
data will be found in $_POST.

$_GET and $_POST, besides being predefined
variables (i.e., ones you don’t need to
create), are arrays, a special variable type
($_SERVER is also an array). This means

that both $_GET and $_POST may contain
numerous values, making the printing of
those values more challenging. You cannot
treat arrays like so (also see Figure B under
“Variable Values” in Chapter 2):

print $_POST; // Will not work!

Instead, to access a specific value, you
must refer to the array’s index or key.
Chapter 7, “Using Arrays,” goes into this
subject in detail, but the premise is simple.
Start with a form element whose name
attribute has a value of something:

<input type="text" name="something" />

Then, assuming that the form uses the
POST method, the value entered into
that form element would be available
in $_POST['something']:

print $ POST['something'];

Unfortunately, there is one little hitch here:
When used within double quotation marks,
the single quotation marks around the key
will cause parse errors @):

print "Thanks for saying:
$_POST['something']";

There are a couple of ways you can avoid
this problem. This chapter will use the
solution that’s syntactically the simplest:
just assign the particular $_POST element to
another variable first:

$something = $ POST['something'];
print "Thanks for saying: $something";

Two final notes before implementing this
information in a new PHP script: First, as with
all variables in PHP, $_POST is case-sensitive:
it must be typed exactly as you see it here (a
dollar sign, one underscore, then all capital
letters). Second, the indexes in $_POST—
something in the preceding example—must
exactly match the name attributes values in
the corresponding form element.

Parse error: syntax error, unexpected
T_ENCAPSED_AND_WHITESPACE, expecting T_STRING or
T_VARIABLE or T_NUM_STRING in /Users/larryullman/Sites
/phpvgsd4/handle_form.php on line 19

0 This ugly parse error is created by attempting to use
$_POST['something'] within double quotation marks.

HTML Forms and PHP 57

To handle an HTML form:

1. Begin a new document in your

text editor or IDE, to be named
handle_foxrm.php (Script 3.3):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Your Feedback</title>
</head>
<body>

. Add the opening PHP tag and any
comments:

<?php // Script 3.3 handle_form.php

// This page receives the data
from feedback.html.

// It will receive: title, name,
email, response, comments, and
submit in $_POST.

Comments are added to the script

to make the script’s purpose clear.
Even though the feedback.html page
indicates where the data is sent (via
the action attribute), a comment here
indicates the reverse (where this script
is getting its data). It also helps to spell
out the exact form element names, in a
case-sensitive manner.

. Assign the received data to new
variables:

$title = $ POST['title'];

$name = $ POST['name'];
$response = $_POST['response'];
$comments = $ POST['comments'];

Script 3.3 This script displays the form data
submitted to it by referencing the associated
$_POST variables.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtm11/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
6 <title>Your Feedback</title>
7 </head>
8 <body>
9 <?php // Script 3.3 handle form.php

11 // This page receives the data from
feedback.html.

12 // It will receive: title, name, email,
response, comments, and submit in $ POST.

13

14 // Create shorthand versions of the
variables:

15 $title = $ POST['title'];

16 $name = $ POST['name'];

17 $response = $ POST['response'];

18 $comments = $ POST['comments'];

19

20 // Print the received data:

21 print "<p>Thank you, $title $name,
for your comments.</p>

22 <p>You stated that you found this
example to be '$response' and
added:
$comments</p>";

23

24 >

25 </body>
26 </html>

58 Chapter 3

Magic Quotes

Earlier versions of PHP had a feature
called Magic Quotes, which has since
been deprecated (meaning you shouldn’t
use it and it will be removed from the
language in time). Magic Quotes—when
enabled—automatically escapes single
and double quotation marks found in
submitted form data. So the string I’d
like more information would be turned
into /\°d like more information.

The escaping of potentially problematic
characters can be useful and even
necessary in some situations. But if the
Magic Quotes feature is enabled on

your PHP installation, you'll see these
backslashes when the PHP script prints
out the form data. You can undo its effect
using the stripslashes() function. To
apply it to the handle_foxrm.php script,
you would do this, for example:

$comments = stripslashes
($_POST['comments']);

instead of just this:

$comments = $ POST['comments'];

That will have the effect of converting
an escaped submitted string back to its
original, non-escaped value.

If you're not seeing extraneous slashes
added to submitted form data, you don’t
need to worry about Magic Quotes.

Again, since the form uses the POST
method, the submitted data can be
found in the $_POST array. The individual
values are accessed using the syntax

$ POST['name_attribute_value']. This
works regardless of the form element’s
type (input, select, checkbox, etc.).

To make it easier to use these values
in a print statement in Step 4, each
value is assigned to a new variable in
this step. Neither $_POST['email'] nor
$_POST['submit'] is being addressed,
but you can create variables for those
values if you'd like.

. Print out the user information:

print "<p>Thank you, $title $name,
for your comments.</p>

<p>You stated that you found this
example to be '$response’ and
added:
$comments</p>";

This one print statement uses the four
variables within a context to show the
user what data the script received.

. Close the PHP section and complete

the HTML page:
>

</body>
</html>

. Save the script as handle_form.php.

Note that the name of this file must
exactly match the value of the action
attribute in the form.

Upload the script to the server (or store
it in the proper directory on your com-
puter if you've installed PHP), making
sure it's saved in the same directory as
feedback.html.

continues on next page

HTML Forms and PHP 59

8. Load feedback.html in your Web browser
through a URL (http://something).

You must load the HTML form through
a URL so that when it’s submitted to
the PHP script, that PHP script is also
run through a URL. PHP scripts must
always be run through a URL!

Failure to load a form through a URL is
a common beginner’s mistake.

9. Fill out @, and then submit the form @.

If you see a blank page, read the next
section of the chapter for how to display
the errors that presumably occurred.

If you see an error notice © or see that
a variable does not have a value when
printed, you likely misspelled either
the form element’s name value or the
$_POST array’s index (or you filled out
the form incompletely).

If you want to pass a preset value along
to a PHP script, use the hidden type of input
within your HTML form. For example, the line

<input type="hidden" name="form_page'
value="feedback.html" />

inserted between the form tags will create a vari-
able in the handling script called $_POST['form_
page'] with the value feedback.html.

Notice that the value of radio button and
certain menu variables is based on the value
attribute of the selected item (for example,
excellent from the radio button). This is also
true for checkboxes. For text boxes, the value
of the variable is what the user typed.

If the handle_form.php script displays
extra slashes in submitted strings, see the
“Magic Quotes” sidebar for an explanation
and solution.

You can also access form data, regardless
of the form’s method, in the $_REQUEST pre-
defined variable. $_GET and $_POST are more
precise, however, and therefore preferable.

Please complete this form to submit your feedback:

Name: | mr. -:] Larry Ullman

Email Address: larry@example.com

Response: This is... @ excellent O okay O boring

Ho problems so far!

Comments:

et ———————— Y
Send My Feedback

0 Whatever the user enters into the HTML form
should be printed out to the Web browser by the
handle_form.php script

Thank you, Mr. Larry Ullman, for your comments,

You stated that you found this example to be 'excellent’ and added:
No problems so far!

G This is another application of the print
statement discussed in Chapter 1, but it constitutes
your first dynamically generated Web page.

Notice: Undefined index: Name in /Users/larryullman/Sites
/phpvgs4/handle_form.php on line 16

Thank you, Mr. , for your comments.

0 Notices like these occur when a script refers
to a variable that doesn’t exist. In this particular
case, the cause is erroneously referring to
$_POST['Name'] when it should be $_POST['name'].

60 Chapter 3

Displaying Errors

One of the very first issues that arise when
it comes to debugging PHP scripts is that
you may or may not even see the errors that
occur. After you install PHP on a Web server,
it will run under a default configuration
with respect to security, performance,

how it handles data, and so forth. One of
the default settings is to not display any
errors. In other words, the display_errors
setting will be off 0. When that's the case,
what you might see when a script has an
error is a blank page. (This is the norm on
fresh installations of PHP; most hosting
companies will enable display_errors.)

The reason that errors should not be
displayed on a live site is that it’s a security
risk. Simply put, PHP’s errors often give away
too much information for the public at large to
see (not to mention showing PHP errors looks
unprofessional). But you, the developer, do
need to see these errors in order to fix them!

To have PHP display errors, you can do
one of the following:

= Turn display_errors back on for PHP
as a whole. (See the “Configuring PHP”
section of Appendix A, “Installation and
Configuration,” for more information.)

= Turn display_errors back on for an
individual script.

continues on next page

display_errors Oft Off

display_startup_errors On On

doc_root na value no value

docref ext na value no value

docref_root na value no value

enable_dl On On

error_append_string no value no value o Run a phpinfo()

error_log '.;,;r;‘:ﬂg?rl:;nlgg.rMAMF'ﬂogs ‘{:ﬁgﬂgﬁ‘{lﬂﬁgﬂmhﬂpﬂﬂgs tscript (e.g., Script 1‘,2)
O view your servers

error_prepend_string no value mONALS display_errors

error_reporting 32767 32767 setting.

HTML Forms and PHP 61

While developing a site, the first option is by
far preferred. However, it’s only a possibility
for those with administrative control over
the server. Anyone can use the second
option by including this line in a script:

ini_set ('display_errors', 1);

The ini_set() function allows a script

to temporarily override a setting in PHP’s
configuration file (many, but not all, settings
can be altered this way). The previous
example changes the display_errors
setting to on, which is represented by

the number 1.

Although this second method can be
implemented by anyone, the downside is
that if your script contains certain kinds of
errors (discussed next), the script cannot
be executed. In that situation, this line of
code won’t be executed, and the particular
error—or any that prevents a script from
running at all—still results in a blank page.

To display errors in a script:

1. Open handle_form.php in your text
editor or IDE, if it is not already open.

2. As the first line of PHP code, enter the
following (Script 3.4):
ini_set ('display_errors’, 1);

Again, this line tells PHP you’d like to
see any errors that occur. You should
call it first thing in your PHP section so
the rest of the PHP code will abide by
this new setting.

3. Save the file as handle_form.php.

Script 3.4 This addition to the PHP script turns on
the display_errors directive so that errors will
be shown.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtm11/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Your Feedback</title>

7 </head>

8 <body>

9 <?php // Script 3.4 - handle form.php #2

10

11 ini_set ('display_errors', 1);
// Let me learn from my mistakes!

12

13 // This page receives the data from
feedback.html.

14 // It will receive: title, name, email,
response, comments, and submit in

$ POST.

15

16 // Create shorthand versions of the
variables:

17 $title = $ POST['title'];

18 $name = $ POST['name'];

19 $response = $ POST['response'];

20 $comments = $ POST['comments'];

21

22 // Print the received data:

23 print "¢p>Thank you, $title $name, for
your comments.</p>

24 <p>You stated that you found this
example to be '$response’ and added:

$comments</p>";

25

26

27 </body>
28 </html>

62 Chapter 3

Please complete this form to submit your feedback:

Name: | Mr. -:] Larry Ullman

Email Address:

Response: This is... O excellent O okay O boring

Comments:

e ——————.
Send My Feedback

0 Incompletely filling out the form...

Notice: Undehined index: response in /Users/larryullman/Sites
/phpvgs4/handle_form.php on line 19

Thank you, Mr. Larry Ullman, for your comments.

You stated that you found this example to be " and added:

G ...results in error messages. These notices are
generated by references to form elements for
which there are no values.

4. Upload the file to your Web server and
test it in your Web browser (@ and @).

If the resulting page has no errors in it,
then the script will run as it did before.
If you saw a blank page when you ran
the form earlier, you should now see
messages like those in (9. Again, if you
see such errors, you likely misspelled
the name of a form element, misspelled
the index in the $_POST array, or didn’t
fill out the form completely.

@D Make sure display_errors is enabled
any time you’re having difficulties debugging
a script. If you installed PHP on your computer,
| highly recommend enabling it in your PHP
configuration while you learn (again, see
Appendix A).

@D If you see a blank page when running a
PHP script, also check the HTML source code
for errors or other problems.

@D Remember that the display_errors
directive only controls whether error mes-
sages are sent to the Web browser. It doesn’t
create errors or prevent them from occurring
in any way.

Failure to use an equals sign after name
in a form element will also cause problems:

<input name"something" />

HTML Forms and PHP 63

Error Reporting

Another PHP configuration issue you should
be aware of, along with display_errors,

is error reporting. There are eleven
different types of errors in PHP, plus four
user-defined types (which aren’t covered
in this book). Table 3.1 lists the four most
important general error types, along with

a description and example of each.

You can set what errors PHP reports
on in two ways. First, you can adjust

the error_reporting level in PHP’s
configuration file (again, see Appendix A).
If you are running your own PHP server,
you’ll probably want to adjust that global
setting while developing your scripts.

The second option is to use the error_
reporting() function in a script. The
function takes either a number or one
or more constants (nhonquoted strings
with predetermined meanings) to adjust
the levels. The most important of these
constants are listed in Table 3.2.

TABLE 3.1 PHP Error Types

Type Description Example

Notice Nonfatal error that may or may not be Referring to a variable that has no value
indicative of a problem

Warning Nonfatal error that is most likely problematic Misusing a function

Parse error Fatal error caused by a syntactical mistake Omission of a semicolon or an imbalance

Error A general fatal error

of quotation marks, braces, or parentheses

Memory allocation problem

TABLE 3.2 Error Reporting Constants
Name

E_NOTICE

E_WARNING

E_PARSE

E_ERROR

E_ALL

E_STRICT

E_DEPRECATED

64 Chapter 3

Script 3.5 Adjust a script's level of error reporting
to give you more or less feedback on potential
and existing problems. In my opinion, more is
always better.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
6 <title>Your Feedback</title>
7 </head>
8 <body>
9 <php // Script 3.5 - handle_form.php #3

11 ini_set ('display errors', 1);
// Let me learn from my mistakes!

12 error_reporting (E_ALL | E_STRICT);
// Show all possible problems!

13

14 // This page receives the data from
feedback.html.

15 // It will receive: title, name, email,
response, comments, and submit in

$ POST.

16

17 // Create shorthand versions of the
variables:

18 $title = $_POST['title'];

19 $name = $ POST['name'];

20 $response = $ POST['response'];

21 $comments = $ POST['comments'];

22

23 // Print the received data:

24 print "<p>Thank you, $title $name, for
your comments.</p>

25 <p>You stated that you found this
example to be '$response’ and added:

$comments</p>";

26

27 >

28 </body>
29 </html>

Using this information, you could add any
of the following to a script:

error_reporting (0);
error_reporting (E_ALL);
error_reporting (E_ALL & ~E_NOTICE);

The first line says that no errors should

be reported. The second requests that all
errors be reported. The last example states
that you want to see all error messages
except notices (the & ~ means and not).
Keep in mind that adjusting this setting
doesn’t prevent or create errors; it just
affects whether or not errors are reported.

It's generally best to develop and test PHP
scripts using the highest level of error
reporting possible. To accomplish that,
declare that you want all errors plus strict
error reporting:

error_reporting (E_ALL | E_STRICT);

The E_ALL setting does not include
E_STRICT, which is why that line says that
all errors should be shown or (the vertical
bar, called the pipe) strict errors should

be shown. This latter setting takes reporting
a step further, also raising notices for
things that could be a problem in future
versions of PHP. Let’s apply this setting to
the handle_form.php page.

To adjust error reporting in a script:

1. Open handle_form.php (Script 3.4)
in your text editor or IDE, if it is not
already.

2. After the ini_set() line, add the follow-
ing (Script 3.5):

error_reporting (E_ALL | E_STRICT);
3. Save the file as handle_form.php.

continues on next page

HTML Forms and PHP 65

4. Place the file in the proper directory for
your PHP-enabled server and test it in
your Web browser by submitting the

form (@) and ©).

At this point, if the form is filled out
completely and the $_POST indexes
exactly match the names of the form
elements, you shouldn’t see any errors
(as in the figures). If any problems
exist, including any potential problems
(thanks to E_STRICT), they should be
displayed and reported.

The PHP manual lists all the error-
reporting levels, but those listed here are
the most important.

The code in this book was tested
using the highest level of error reporting:
E_ALL | E_STRICT.

Please complete this form to submit your feedback:

Name: | Mms. |3} Blankenship

Email Address: ida@example.edu

Response: This is... O excellent O okay @ boring

Enough already!

Comments:

Send My Feedback

0 Try the form one more time...

Thank you, Ms. Blankenship, for your comments.

You stated that you found this example to be 'boring’ and added:

Enough already!

0 ...and here’s the result (if filled out completely
and without any programmer errors).

66 Chapter 3

Manually Sending
Data to a Page

The last example for this chapter is a slight
tangent to the other topics but plays off
the idea of handling form data with PHP. As
discussed in the section “Choosing a Form
Method,” if a form uses the GET method,
the resulting URL is something like

http://www.example.com/page.php?
some_var=some_value8age=208&...

The receiving page (here, page.php) is
sent a series of name=value pairs, each
of which is separated by an ampersand
(&). The whole sequence is preceded by
a question mark (immediately after the
handling script’s name).

To access the values passed to the page
in this way, turn to the $_GET variable. Just
as you would when using $_POST, refer to
the specific name as an index in $_GET.

In that example, page.php receives a
$_GET['some_var'] variable with a value of
some_value, a $_GET['age'] variable with
a value of 20, and so forth.

You can pass data to a PHP script in this
way by creating an HTML form that uses
the GET method. But you can also use this
same idea to send data to a PHP page
without the use of the form. Normally you'd
do so by creating links:

Some Link

That link, which could be dynamically
generated by PHP, will pass the value 22
to page.php, accessible in $ GET['id'].

To try this for yourself, the next pair of
scripts will easily demonstrate this concept,
using a hard-coded HTML page.

HTML Forms and PHP 67

http://www.example.com/page.php?

To create the HTML page:

1.

Begin a new document in your text
editor or IDE, to be named hello.html
(Script 3.6):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/
DTD/xhtml1i-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Greetings!</title>
</head>
<body>
<!-- Script 3.6 - hello.html -->
<div><p>Click a link to say
hello:</p>

. Create links to a PHP script, passing

values along in the URL:

<a href="hello.php?
name=Michael">Michael</1i>
<a href="hello.php?
name=Celia">Celia</1i>
<a href="hello.php?
name=Jude">Jude</1i>
<a href="hello.php?
name=Sophie">Sophie</1i>

Script 3.6 This HTML page uses links to pass
values to a PHP script in the URL (thereby
emulating a form that uses the GET method).

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtm11/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
6 <title>Greetings!</title>
7 </head>
8 <body>
9 «!-- Script 3.6 - hello.html -->
10 «div>¢p>Click a link to say hello:</p>

12 «

13 <a href="hello.php?
name=Michael">Michael</1i>

14 <a href="hello.php?
name=Celia">Celia</1i>

15 <a href="hello.php?
name=Jude">Jude</1i>

16 <a href="hello.php?

name=Sophie">Sophie</1i>
17

18

19 </div>
20 </body>
21 </html>

68 Chapter 3

Click a link to say hello:

« Michael
« Celia
ude
ophie

—
[=9

e

0 The simple HTML page, with
four links to the PHP script.

The premise here is that the user will
see a list of links, each associated with
a specific name). When the user
clicks a link, that name is passed to
hello.php in the URL @.

If you want to use different names,
that’s fine, but stick to one-word names
without spaces or punctuation (or

else they won'’t be passed to the PHP
script properly, for reasons that will be
explained in time).

. Complete the HTML page:

</div>
</body>
</html>

. Save the script as hello.html and

place it within the proper directory
on your PHP-enabled server.

. Load the HTML page through a URL

in your Web browser.

Although you can view HTML pages
without going through a URL, you’ll click
links in this page to access the PHP
script, so you'll need to start off using

a URL here. Don'’t click any of the links
yet, as the PHP script doesn’t exist!

<a href="hello

“l== Script 3.6 = hello.html -->
<div><p>Click a link to say hello:</p>

.php?name=Michael ">Michael«</1li>

<a href="hello

.php?name=Celia">Celia</a»</li=>

<a href="hello

.php?name=Jude">Jude</1li>

<a href="hello

.php?name=Sophie”>Sophie</1li>

</div>

0 The HTML source of the page shows how values are being passed along in the

URL for the four links.

HTML Forms and PHP 69

Script 3.7 This PHP page refers to the name value
passed in the URL in order to print a greeting.

To create the PHP script:

They may or may not be necessary for
your situation but can be helpful.

. Use the name value passed in the URL
to create a greeting:

$name = $ GET['name'];
print "<p>Hello, <span
style=\"font-weight:
bold;\">$name!</p>";

The name variable is sent to the page
through the URL (see Script 3.6). To

access that value, refer to $_GET['name’].

Again, you would use $_GET (as opposed
to $_POST) because the value is coming
from a GET request.

1. Begin a new document in your text
editor or IDE, to be named hello.php 1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
(Script 3.7): 1.0 Transitional//EN"
pt3./): 2 "http://www.w3.0rg/TR/xhtm11/DTD/
<!DOCTYPE html PUBLIC "-//W3C//DTD xhtmli-transitional.dtd">
XHTML 1.0 Transitional//EN" 3 <html xmlns="http://www.w3.0rg/1999/
"http://www.w3.org/TR/xhtml1/ . ’(‘:E;"j} xml:lang="en" lang="en">
DTD/xhtmli-transitional.dtd"> 5 <meta http_equiv:"Content-Type"
<html xmlns="http://www.w3.org/ content="text/html; charset=utf-8"/>
1999/xhtml" xml:lang="en" 6 <title>Greetings!</title>
lang="en"s 7 </head>
8 <body>
<head> . w " 9 <?php // Script 3.7 - hello.php
<meta http-equiv="Content-Type 10
content="text/html; 11 ini_set ('display_errors', 1);
charset=utf-8"/> // Let me learn from my mistakes!
<title>Greetings!</title> 12 error reporting (E_ALL | E_STRICT);
</head> // Show all possible problems!
13
<body> 14 // This page should receive a name value
. Begin the PHP code: in the URL.
15
<?php // Script 3.7 - hello.php 16 // Say "Hello":
. Address the error management, if desired: fU LD & G TE R
18 print "<p>Hello, $name
error_reporting (E_ALL | E_STRICT); !</p>";
19
These two lines, which configure how 20
PHP responds to errors, are explained 21 </body>
in the pages leading up to this section. 2 </htnl>

70 Chapter 3

aeno Creetings!

[« [» | [+ [Gihup:/ /phpvas4:8888/hello.php?name=Michael

Hello. Michael!

G By clicking the first link, Michael is passed
along in the URL and is greeted by name.

0o Greetings!

I b | >] I 4+ |(&Jhttp://phpvgs4:8888/hello.phpname=Celia

Hello, Celia!

0 By clicking the second link, Celia is sent along
in the URL and is also greeted by name.

anM Greetings!
[« | »] [+]Qjhttp:thpvqs4.‘8888{hello.php G]

Notice: Undefined index: name in
fUsersAarryullman/Sites/phpvgs4/hello.php on line 17

Hello, !

G If the $_GET['name'] variable isn’t assigned
a value, the browser prints out this awkward
message, along with the error notice.

80O Greetings!

i - | [3 J [+ iﬁ,hnn',Hnhn\.lq;4'P.FtRR!haIIn.php?namp:Nimlp

Hello, Nicole!

o Any value assigned to name (lowercase) in the
URL is used by the PHP script.

As with earlier PHP scripts, the value in
the predefined variable ($_GET) is first
assigned to another variable, to simplify
the syntax in the print statement.

5. Complete the PHP code and the
HTML page:

>
</body>
</html>

6. Save the script as hello.php and place
it within the proper directory on your
PHP-enabled server.

It should be saved in the same directory
as hello.html (Script 3.6).

7. Click the links in hello.html to view
the result @ and ©.

If you run hello.php directly (i.e.,
without clicking any links), you’ll get an error
notice because no name value would be
passed along in the URL G

Because hello.php reads a value from
the URL, it actually works independently of
hello.html. For example, you can directly
edit the hello.php URL to greet anyone, even
if hello.html does not have a link for that
name @.

@D If you want to use a link to send multiple
values to a script, separate the name=value
pairs (for example, first_name=Larry) with
the ampersand (&). So, another link may be
hello.php? first_name=Larry&last_
name=Ullman. You should continue to use
only single words, without punctuation or
spaces, however (until you later learn about
the urlencode() function).

Although the example here—setting the
value of a person’s name—may not be very
practical, this basic technique is useful on
many occasions. For example, a PHP script
might constitute a template, and the content
of the resulting Web page would differ based
on the values the page received in the URL.

HTML Forms and PHP 71

Review and Pursue

If you have any problems with the review
questions or the pursue prompts, turn

to the book’s supporting forum (www.
LarryUllman.com/forum/).

Review

What is the significance of a form’s
action attribute?

What is the significance of a form’s
method attribute? Is it more secure to
use GET or POST? Which method type
can be bookmarked in the browser?

What predefined variable will contain
the data from a form submission? Note:
There are multiple answers.

Why must an HTML page that contains
a form that’s being submitted to a PHP
script be loaded through a URL?

Under what circumstances will attempts
to enable display_errors in a script
not succeed? Why is it not secure to
enable display_errors on live sites?

Pursue

Load feedback.html in your Web
browser without going through a URL
(i.e., the address bar would likely start
with file://). Fill out and submit the form.
Observe the result so that you can
recognize this problem, and understand
its cause, in case you see similar results
in the future.

If you have not already, and if you
can, make sure that display_errors
is enabled on your development
environment.

If you have not already, and if you
can, make sure that error_reporting
is setto E_ALL | E_STRICT on your
development environment.

Try introducing different errors in a PHP
script—by improperly balancing quotation
marks, failing to use semicolons, referring
to variables improperly, and so on—to
see the result.

Experiment with the hello.html and
the hello.php pages to send different
values, including numbers, to the PHP
script through the URL.

Create a variation on hello.html that
sends multiple name=value pairs to a
PHP script. Have the PHP script then
print all the received values.

If you're the inquisitive type, and don’t
mind waiting for answers, try passing
more complicated values to a page
through the URL. Try using spaces and
punctuation to see what happens.

Create a new HTML form that performs
a task you envision yourself needing
(or a lighter-weight version of that
functionality). Then create the PHP
script that handles the form, printing
just the received data.

72 Chapter 3

www.LarryUllman.com/forum/
www.LarryUllman.com/forum/

Using Numbers

Chapter 2, “Variables,” briefly discussed
the various types of variables, how to
assign values to them, and how they’re
generally used. In this chapter, you’ll work
specifically with number variables—both
integers (whole numbers) and floating-
point numbers (aka floats or decimals).

The chapter begins by creating an HTML
form that will be used to generate number
variables. Then you’ll learn how to perform
basic arithmetic, how to format numbers, and
how to cope with operator precedence. The
last two sections of this chapter cover incre-
menting and decrementing numbers, plus
generating random numbers. Throughout the
chapter, you'll also learn about other useful
number-related PHP functions.

In This Chapter

Creating the Form
Performing Arithmetic
Formatting Numbers
Understanding Precedence

Incrementing and Decrementing
a Number

Creating Random Numbers

Review and Pursue

74
77
81

84

86
88
90

Creating the Form

Most of the PHP examples in this chapter
will perform various calculations based on
an e-commerce premise. A form will take
price, quantity, discount amount, tax rate,
and shipping cost @), and the PHP script
that handles the form will return a total
cost. That cost will also be broken down
by the number of payments the user wants
to make in order to generate a monthly
cost value @.

To start, let’s create an HTML page that
allows the user to enter the values.

To create the HTML form:

1. Begin a new HTML documentin
your text editor or IDE, to be named
calculatox.html (Script 4.1):

<IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmla1/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Product Cost Calculator
</title>
</head>
<body><!-- Script 4.1 -
calculator.html -->
<div><p>Fill out this form to
calculate the total cost:</p>

Fill out this form te calculate the total cost
Price:

Cuantity:

Dhizcount:

Tax: (26)

Shipping method:
Mumber of payments to make:

0 This form takes numbers from
the user and sends them to a
PHP page.

You have selected to purchase:

100 wadgel(s) al

$5.00 price each plus a

$5.00 shipping cost and a

7.5 percent tax rate.

After your $10.00 discount, the total cost is $532.13.

Divided owver 10 monthly payments, that would be $53.21 each

0 The PHP script performs a series of calculations
on the submitted data and outputs the results. The
results should look like this by the end of the chapter.

74 Chapter 4

Script 4.1 This basic HTML form will be the

origination of the numbers on which mathematical
calculations will be performed in several PHP scripts.

1

2

oo

10
11

12
13

14
15

16
17

18
19

20
21

22
23
2
25

26
27

28
29

30
31
32
33

35

<IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Product Cost Calculator
</title>
</head>
<body><!-- Script 4.1 -
calculator.html -->
<div><p>Fill out this form to
calculate the total cost:</p>

<form action="handle calc.php"
method="post">

<p>Price: <input type="text"
name="price" size="5" /></p>
<p>Quantity: <input type="text"
name="quantity" size="5" /></p>

<p>Discount: <input type="text"
name="discount" size="5" /></p>

<p>Tax: <input type="text" name="tax"
size="3" /> (%)</p>

<p>Shipping method: <select
name="shipping">

<option value="5.00">Slow and steady
</option>

<option value="8.95">Put a move on
it.</option>

<option value="19.36">I need it
yesterday!</option>

</select></p>

<p>Number of payments to make:
<input type="text" name="payments"
size="3" /></p>

<input type="submit" name="submit"
value="Calculate!" />

</formy
</div>

</body>
</html>

2. Create the initial form tag:

<form action="handle_calc.php"
method="post">

This form tag begins the HTML form. Its
action attribute indicates that the form
data will be submitted to a page named
handle_calc.php. The tag’s method
attribute tells the page to use POST to
send the data. See Chapter 3, “HTML
Forms and PHP,” for more details.

. Create the inputs for the price, quantity,

discount, and tax:

<p>Price: <input type="text"
name="price" size="5" /></p>
<p>Quantity: <input type="text"
name="quantity" size="5" /></p>
<p>Discount: <input type="text"
name="discount" size="5" /></p>
<p>Tax: <input type="text"
name="tax" size="3" /> (%)</p>

XHTML has no input type for numbers,
so you create text boxes for these
values. A parenthetical indicates that
the tax should be entered as a percent.

Also remember that the names used for
the inputs have to correspond to valid
PHP variable names (letters, numbers,
and the underscore only; doesn’t start
with a number, and so forth).

continues on next page

Using Numbers 75

4. Add a field in which the user can select
a shipping method:

<p>Shipping method: <select
name="shipping">

<option value="5.00">Slow and
steady</option>

<option value="8.95">Put a move
on it.</option>

<option value="19.36">I need it
yesterday!</option>

</select></p>

The shipping selection is made using

a drop-down menu. The value of the
selected option is the cost for that option.
If the user selects, for example, the

Put a move on it. option, the value of
$_POST['shipping'] in handle_calc.php
will be 8.95.

5. Complete the HTML form:

<p>Number of payments to make:
<input type="text"
name="payments" size="3" /></p>

<input type="submit" name="submit"
value="Calculate!" />

</foxrm>

The final two input types take a number
for how many payments are required
and then create a submit button (labeled
Calculatel). The closing form tag marks
the end of the form section of the page.

6. Complete the HTML page:

</div>
</body>
</html>

7. Save the script as calculator.html
and view it in your Web browser.

Because this is an HTML page, you can
view it directly in a Web browser.

76 Chapter 4

Script 4.2 This PHP script executes all the
standard mathematical calculations using
the numbers submitted from the form.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Product Cost Calculator</title>
7 <style type="text/css" media="screen">
8 .number { font-weight: bold; }

9 </style>

10 </head>

11 <body>

12 <?php // Script 4.2 - handle_calc.php
13 /* This script takes values from
calculator.html and performs

14 total cost and monthly payment
calculations. */

15

16 // Address error handling, if you want.

17

18 // Get the values from the $ _POST array:

19 $price = $ POST['price'];

20 $quantity = $ POST['quantity'];

21 $discount = $ POST['discount'];

22 $tax = $ POST['tax'];

23 $shipping = $ POST['shipping'];

24 $payments = $ POST['payments'];

25

26 // Calculate the total:

27 $total = $price * $quantity;

28 $total = $total + $shipping;

29 $total = $total - $discount;

30

31 // Determine the tax rate:

32 $taxrate = $tax/100;

33 ¢$taxrate = $taxrate + 1;

34

35 // Factor in the tax rate:

36 $total = $total * $taxrate;

37

38 // Calculate the monthly payments:

39 $monthly = $total / $payments;

40

code continues on next page

Performing Arithmetic

Just as you learned in grade school, basic
mathematics involves the principles of
addition, subtraction, multiplication, and
division. These are performed in PHP using
the most obvious operators:

= Addition (+)

= Subtraction (-)
= Multiplication (*)
= Division (/)

To use these operators, you'll create a PHP
script that calculates the total cost for the sale
of some widgets. This handling script could
be the basis of a shopping cart application—
a very practical Web page feature (although
in this case the relevant number values will
come from calculator.html).

When you’re writing this script, be sure to
note the use of comments (Script 4.2) to
illuminate the different lines of code and
the reasoning behind them.

To create your sales cost calculator:

1. Create a new document in your text
editor or IDE, to be named handle_
calc.php (Script 4.2):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmla/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Product Cost Calculator
</title>

continues on next page

Using Numbers 77

<style type="text/css"
media="screen">
.number { font-weight: bold; }
</style>
</head>
<body>

The head of the document defines one
CSS class called number. Any element
within the page that has that class
value will be given extra font weight. In
other words, when the numbers from
the form, and the results of the various
calculations, are printed in the script’s
output, they’ll be made more obvious.

. Insert the PHP tags and address error
handling, if desired:

<?php // Script 4.2 -
handle_calc.php

Depending on your PHP configuration,
you may or many not want to add a
couple of lines that turn on display_
errors and adjust the level of error
reporting. See Chapter 3 for specifics.

. Assign the $_POST elements to local
variables:

$price = $ POST['price'];
$quantity = $ POST['quantity'];
$discount = $_POST['discount'];
$tax = $ _POST['tax'];
$shipping = $ POST['shipping'];
$payments = $_POST['payments'];

The script will receive all the form data

in the predefined $_POST variable. To
access individual form values, refer to
$_POST['index'], replacing index with the
corresponding form element’s name value.
These values are assigned to individual
local variables here, to make it easier to
use them throughout the rest of the script.

Note that each variable is given a
descriptive name and is written entirely
in lowercase letters.

Script 4.2 continued

4
42

43

44

45

46

47

48

49

50
51
52
53

// Print out the results:

print "<p>You have selected to
purchase:

$quantity
 widget(s) at

$$price
price each plus a

$$shipping
 shipping cost and a

$tax
percent tax rate.

After your $
$discount discount, the total
cost is

$$total
.

Divided over
$payments monthly payments,
that would be $
$monthly each.</p>";

>
</body>
</html>

78 Chapter 4

4. Begin calculating the total cost:

$total = $price * $quantity;
$total = $total + $shipping;
$total = $total - $discount;

The asterisk (*) indicates multiplication

in PHP, so the total is first calculated

as the number of items purchased
($quantity) multiplied by the price. Then
the shipping cost is added to the total
value (remember that the shipping cost
correlates to the value attribute of each
shipping drop-down menu’s option
tags), and the discount is subtracted.

Note that it’s perfectly acceptable to
determine a variable’s value in part by
using that variable’s existing value (as is
done in the last two lines).

. Calculate the tax rate and the new total:

$taxrate = $tax/100;
$taxrate = $taxrate + 1;
$total = $total * $taxrate;

The tax rate should be entered as a
percent—for example, 8 or 5.75. This
number is then divided by 100 to get the
decimal equivalent of the percent (.08 or
.0575). Finally, you calculate how much
something costs with tax by adding

1to the percent and then multiplying
that new rate by the total. This is the
mathematical equivalent of multiplying
the decimal tax rate times the total and
then adding this result to the total (for
example, a 5 percent tax on $100 is $5,
making the total $105, which is the same
as multiplying $100 times 1.05).

. Calculate the monthly payment:
$monthly = $total / $payments;

As an example of division, assume
that the widgets can be paid for over
the course of many months. Hence,
you divide the total by the number of
payments to find the monthly payment.

7. Print the results:

print "<p>You have selected to
purchase:

$quantity
 widget(s) at

$$price
 price each plus a

$$shipping
 shipping cost and a

$tax
percent tax rate.

After your $
$discount discount, the
total cost is

$$total
.<bxr />

Divided over
$payments monthly
payments, that would be $$monthly
each.</p>";

The print statement sends every value
to the Web browser along with some
text. To make it easier to read,

tags are added to format the browser
result; in addition, the print function
operates over multiple lines to make the
PHP code cleaner. Each variable’s value
will be highlighted in the browser by
wrapping it within span tags that have a
class attribute of number (see Step 1).

. Close the PHP section and complete

the HTML page:
>

</body>
</html>

. Save the script as handle_calc.php

and place it in the proper directory for
your PHP-enabled server.

Make sure that calculator.html is in
the same directory.

continues on next page

Using Numbers 79

10. Test the script in your Web browser
by filling out @ and submitting @
the form.

Not to belabor the point, but make sure
you start by loading the HTML form
through a URL (http.//something) so
that when it’s submitted, the PHP script
is also run through a URL.

You can experiment with these values
to see how effectively your calculator
works. If you omit any values, the
resulting message will just be a little odd
but the calculations should still work @.

As you'll certainly notice, the calculator
comes up with numbers that don’t correspond
well to real dollar values (see (:) and (9)). In
the next section, “Formatting Numbers,” you’ll
learn how to address this issue.

If you want to print the value of the total
before tax or before the discount (or both),
you can do so in two ways. You can insert the
appropriate print statements immediately
after the proper value has been determined
but before the $total variable has been
changed again. Or, you can use new variables
to represent the values of the subsequent
calculations (for example, $total_with_tax
and $total_less_discount).

Attempting to print a dollar sign followed
by the value of a variable, such as $10 (where
10 comes from a variable), has to be handled
carefully. You can’t use the syntax $$variable,
because the combination of two dollar signs
creates a type of variable that’s too complex

to discuss in this book. One solution is to put
something—a space or an HTML tag, as in this
example—between the dollar sign and the vari-
able name. Another option is to escape the first
dollar sign:

print "The total is \$$total";

A third option is to use concatenation, which is
introduced in the next chapter.

Fill cut this form to calculate the total cost:
Pricer | 1995

Cuantity: b

Digcount: 10,00

oo b (a)

Shipping method: | Slow and steady »

Mumber of payments to make: [12

O The HTML form...

Tou have selected to purchase

6 widget(s) at

$19.95 price each plus a

F5.00 shippmy, vost and a

6 percent tax rate.

After your $10.00 discount, the total cost iz $121.582.

Dinded ever 12 monthly payments, that would be $10.1318333333 cach.

0 ...and the resulting calculations.

You have selected to purchasze:

& widget(s) at

$19.95 price sach pluz a

$5.00 shipping cost and a

peruenl lax rale.

Aller your B discount, the tolal cost s $124.7.

Dipnnded over 12 monthly paymnents, thial would be 310 3916666667 vach.

G You can omit or change any value and rerun
the calculator. Here the tax and discount values
have been omitted.

This script performs differently, depend-
ing on whether the various fields are sub-
mitted. The only truly problematic field is

the number of monthly payments: If this is
omitted, you’ll see a division-by-zero warning.
Chapter 6, “Control Structures,” will cover
validating form data before it’s used.

@D HTML 5 is expected to have one or
more inputs that restrict the user to entering
numeric values.

80 Chapter4

Formatting Numbers

Although the calculator is on its way to
being practical, it still has one legitimate
problem: You can’t ask someone to make
a monthly payment of $10.13183333! To
create more usable numbers, you need to
format them.

There are two appropriate functions for this
purpose. The first, round(), rounds a value
to a specified number of decimal places. The
function’s first argument is the number to
be rounded. This can be either a number

or a variable that has a numeric value. The
second argument is optional; it represents
the number of decimal places to which

to round. If omitted, the number will be
rounded to the nearest integer. For example:

round (4.30); // 4

round (4.289, 2); // 4.29
$num = 236.26985;

round ($num); // 236

The other function you can use in this
situation is number_format(). It works

like round() in that it takes a number (or

a variable with a numeric value) and an
optional decimal specifier. This function has
the added benefit of formatting the number
with commas, the way it would commonly
be written:

number_format (428.4959, 2); // 428.50
number_format (428, 2); // 428.00
number_format (123456789);

/1 123,456,789

Let’s rewrite the PHP script to format the
numbers appropriately.

Using Numbers 81

To format numbers:

1. Open handle_calc.php in your text
editor or IDE, if it is not already open
(Script 4.2).

2. After all the calculations but before the
print statement, add the following
(Script 4.3):

$total = number format ($total, 2);
$monthly = number_format
($monthly, 2);

To format these two numbers, apply
this function after every calculation

has been made but before they’re

sent to the Web browser. The second
argument (the 2) indicates that the
resulting number should have exactly
two decimal places; this setting rounds
the numbers and adds zeros at the end,
as necessary.

Script 4.3 The number_format() function is
applied to the values of two number variables,
so they are more appropriate.

1

2

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36
37
38
39
40
41
42
43
44

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML

1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/

xhtml" xml:lang="en" lang="en">

<head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/»
<title>Product Cost Calculator</title>
<style type="text/css" media="screen">

.number { font-weight: bold;}

</style>

</head>

<body>

<?php // Script 4.3 - handle_calc.php #2

/* This script takes values from

calculator.html and performs

total cost and monthly payment

calculations. */

// Address error handling, if you want.

// Get the values from the $ POST array:
$price = $ POST['price'];

$quantity = $ POST['quantity'];

$discount = $ POST['discount'];

$tax = $ POST['tax'];

$shipping = $ POST['shipping'];

$payments = $ POST['payments'];

// Calculate the total:

$total = $price * $quantity;
$total = $total + $shipping;
$total = $total - $discount;

// Determine the tax rate:
$taxrate = $tax/100;
$taxrate = $taxrate + 1;

// Factor in the tax rate:
$total = $total * $taxrate;

// Calculate the monthly payments:
$monthly = $total / $payments;

// Apply the proper formatting:
$total = number_format ($total, 2);
$monthly = number format ($monthly, 2);

code continues on next page

82 Chapter4

Script 4.3 continued

45 // Print out the results:

46 print "<p>You have selected to
purchase:br />

47 $quantity
widget(s) at

48 $$price
price each plus a

49 $$shipping
shipping cost and a

50 $tax percent
tax rate.

51 After your $
$discount discount, the total
cost is

52 $$total.

53 Divided over
$payments monthly payments, that
would be $$monthly
 each.</p>";

54

5

56 </body>
57 </html>

Fill out this form to calculate the total cost:
Drice:[90.00 |

Quantiy 4|

Discount: IE

Tac[s5_|04)

Shipping method: [Putamove onit._ v

Mumber of payments to make: |24

Calculate!

o Another
form entry.

You have selected to purchase:

4 wadgel(s) al

$99.00 price each plus a

$8.95 shipping cost and a

5.5 percent tax rate.

After your $25.00 discount, the total cost is $400.85.

Divided over 24 monthly payments, that would be $16.70 sach

0 The updated version of the script returns more
appropriate number values thanks to the number_
format() function.

3. Save the file, place it in the same direc-
tory as calculator.html, and test it in
your browser @) and @.

@D Another, much more complex way to
format numbers is to use the printf() and
sprintf() functions. Because of their tricky
syntax, they’re not discussed in this book; see
the PHP manual for more information.

@D Non-Windows versions of PHP also have
amoney_format() function, which can be
used in lieu of number_format().

For complicated reasons, the round()
function rounds exact halves (.5, .05, .005,
and so on) down half the time and up half
the time.

In PHP, function calls can have spaces
between the function name and its parenthe-
ses or not. Both of these are fine:

round ($num);
round($num);

@D The number_format() function takes
two other optional arguments that let you spec-
ify what characters to use to indicate a decimal
point and break up thousands. This is useful,
for example, for cultures that write 1,000.89 as
1.000,89. See the PHP manual for the correct
syntax, if you want to use this option.

Using Numbers 83

Understanding
Precedence

Inevitably, after a discussion of the various
sorts of mathematical operators comes the
discussion of precedence. Precedence
refers to the order in which a series of
calculations are executed. For example,
what is the value of the following variable?

$number = 10 - 4 / 2;

Is $numbexr worth 3 (10 minus 4 equals 6,
divided by 2 equals 3) or 8 (4 divided by
2 equals 2, subtracted from 10 equals 8)?
The answer here is 8, because division
takes precedence over subtraction.

Appendix B, “Resources and Next Steps,”
shows the complete list of operator
precedence for PHP (including operators
that haven’t been covered yet). However,
instead of attempting to memorize a
large table of peculiar characters, you
can bypass the whole concept by using
parentheses. Parentheses always take
precedence over any other operator.
Thus:

(10 - 4) / 25 /1 3
10 - (4 / 2); /1 8

Using parentheses in your calculations
ensures that you never see peculiar results
due to precedence issues. Parentheses
can also be used to rewrite complex
calculations in fewer lines of code. Let’s
rewrite the handle_calc.php script,
combining multiple lines into one by using
parentheses, while maintaining accuracy.

$number
$number

Script 4.4 By using parentheses, calculations
made over multiple lines (see Script 4.3) can
be condensed without affecting the script’s
mathematical accuracy.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtm11/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Product Cost Calculator</title>
7 <style type="text/css" media="screen">
8 .number { font-weight: bold;}

9 </style>

10 </head>

11 <body>

12 <?php // Script 4.4 - handle_calc.php #3

13 /* This script takes values from
calculator.html and performs

14 total cost and monthly payment
calculations. */

15

16 // Address error handling, if you want.

17

18 // Get the values from the $ POST array:

19 $price = $ POST['price'];

20 $quantity = § POST['quantity'];

21 $discount = $ POST['discount'];

22 $tax = $ POST['tax'];

23 $shipping = $ POST['shipping'];

24 $payments = $ POST['payments'];

25

26 // Calculate the total:

27 $total = (($price * $quantity) +
$shipping) - $discount;

28

29 // Determine the tax rate:

30 $taxrate = ($tax/100) + 1;

31

32 // Factor in the tax rate:

33 $total = $total * $taxrate;

34

35 // Calculate the monthly payments:

36 $monthly = $total / $payments;

37

38 // Apply the proper formatting:

39 $total = number format ($total, 2);

40 $monthly = number format ($monthly, 2);

41

code continues on next page

84 Chapter4

Script 4.4 continued

42 // Print out the results:

43 print "¢p>You have selected to
purchase:cbr />

44 $quantity
widget(s) at

45 $$price
price each plus a

46 $$shipping
shipping cost and a

47 $tax percent
tax rate.

48 After your $$discount
 discount, the total cost is

49 $$total.

50 Divided over
$payments monthly payments, that
would be $$monthly
 each.</p>";

51

52

53 </body>

54 </html>

Fill out this form to calculate the total cost:
Price:[150 |

Quantity: @

Discount: IC

Tax[6 | @4)

Stpping metho [Tt yesoriag V]

Mumber of payments to make: |2

o Testing
the form one
more time.

You have selected to purchase:

250 widgel(s) al

$1.50 price each plus a

$19.36 shipping cost and a

& percent tax rate.

After your $0 discount, the total cost is $418.02.

Divided over 2 monthly payments, that would be $209.01 each.

0 Even though the calculations have been
condensed, the math works out the same. If you
see different results or get an error message,
double-check your parentheses for balance (an

equal number of opening and closing parentheses).

To manage precedence:

1.

Open handle_calc.php in your text
editor or IDE, if it is not already open
(Script 4.3).

Replace the three lines that initially cal-
culate the order total with the following
(Script 4.4):

$total = (($price * $quantity) +
$shipping) - $discount;

There’s no reason not to make all the
calculations in one step, as long as
you use parentheses to ensure that
the math works properly. The other
option is to memorize PHP’s rules of
precedence for multiple operators, but
using parentheses is a lot easier.

Change the two lines that calculate and
add in the tax to this:

$taxrate = ($tax/100) + 1;

Again, the tax calculations can be made
in one line instead of two separate ones.

Save the script, place it in the same
directory as calculator.html, and test
it in your browser @ and @.

Be sure that you match your parentheses
consistently as you create your formulas
(every opening parenthesis requires a closing
parenthesis). Failure to do so will cause parse
errors.

Granted, using the methods applied
here, you could combine all the total cal-
culations into just one line of code (instead
of three)—but there is such a thing as
oversimplifying.

Using Numbers 85

Incrementing and
Decrementing
a Number

PHP, like Perl and most other programming
languages, includes some shortcuts that let
you avoid ugly constructs such as

$tax = $tax + 1;

When you need to increase the value

of a variable by 1 (called an incremental
adjustment) or decrease the value of a
variable by 1 (a decremental adjustment),
you can use ++ and --, respectively:

$var = 20; // 20
$var++; // 21
$var++; // 22
$var--; // 21

Solely for the sake of testing this concept,
you’ll rewrite the handle_calc.php script
one last time.

To increment the value of a variable:

1. Open handle_calc.php in your text
editor or IDE, if it is not already open
(Script 4.4).

2. Change the tax rate calculation from
Script 4.3 to read as follows (Script 4.5):

$taxrate = $tax/100;
$taxrate++;

The first line calculates the tax rate

as the $tax value divided by 100. The
second line increments this value by 1
so that it can be multiplied by the total
to determine the total with tax.

Script 4.5 Incrementing or decrementing a number
is a common operation using ++ or --, respectively.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtm11/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Product Cost Calculator
</title>

7 <style type="text/css" media="screen">

8 .number { font-weight: bold;}

9 </style>

10 </head>

11 <body>

12 <?php // Script 4.3 - handle_calc.php #4

13 /* This script takes values from
calculator.html and performs

14 total cost and monthly payment
calculations. */

15

16 // Address error handling, if you want.

17

18 // Get the values from the $ POST array:

19 $price = $ POST['price'];

20 $quantity = § POST['quantity'];

21 $discount = $ POST['discount'];

22 $tax = $ POST['tax'];

23 $shipping = $ POST['shipping'];

24 $payments = $ POST['payments'];

25

26 // Calculate the total:

27 $total = (($price * $quantity) +
$shipping) - $discount;

28

29 // Determine the tax rate:

30 $taxrate = $tax/100;

31 $taxrate++;

32

33 // Factor in the tax rate:

34 $total = $total * $taxrate;

35

36 // Calculate the monthly payments:

37 $monthly = $total / $payments;

38

39 // Apply the proper formatting:

40 $total = number format ($total, 2);

41 $monthly = number format ($monthly, 2);

Iy

code continues on next page

86 Chapter4

Script 4.5 continued

43 // Print out the results:

44 print "<p>You have selected to
purchase:br />

45 $quantity
widget(s) at

46 $$price
price each plus a

47 $$shipping
shipping cost and a

48 $tax
percent tax rate.cbr />

49 After your $
$discount discount, the total
cost is

50 $$total.

51 Divided over
$payments monthly payments, that
would be $
$monthly each.</p>";

52

5

54 </body>
55 </html>

Till cut this form to calculate the total cost:
Price: E

Qo0

Discount: [10.00 |

Tax[75 |@8)

Shipping method: | Slow and steady v

Mumber of payments to tnake: 10

o The last
execution of
the form.

You have selected to purchase:

100 widget(s) at

$5.00 price each plus a

$5.00 shipping cost and a

7.5 percent tax rate.

After your $10.00 discount, the total cost is $532.13.

Divided over 10 monthly payments, that would be §53.21 each.

0 It won’t affect your calculations if you use the
long or short version of incrementing a variable
(compare Scripts 4.4 and 4.5).

3. Save the script, place it in the same
directory as calculator.html, and test
it in your browser @) and @.

@D Aithough functionally it doesn’t matter
whether you code $taxrate = $taxrate +
1; or the abbreviated $taxrate++, the latter
method (using the increment operator) is more
professional and common.

@D In Chapter 6, “Control Structures,” you'll
see how the increment operator is commonly
used in conjunction with loops.

Arithmetic Assignment
Operators

PHP also supports a combination of
mathematical and assignment operators.
These are +=, -=, *=, and /=. Each will
assign a value to a variable by perform-
ing a calculation on it. For example, these
next two lines both add 5 to a variable:

$num = $num + 5;

$num += 5;

This means the handle_calc.php script
could determine the tax rate using this:
$tax = $ POST['tax']; // Say, 5
$tax /= 100; // Now $tax is .05
$tax += 1; // 1.05

You'll frequently see these shorthand
ways of performing arithmetic.

Using Numbers 87

Creating Random
Numbers

The last function you’ll learn about in
this chapter is rand(), a random-number
generator. All it does is output a random
number:

$n = rand(); // 31
$n = rand(); // 87

The rand() function can also take minimum
and maximum parameters, if you prefer to

limit the generated number to a specific range:

$n = rand (0, 10);

These values are inclusive, so in this case
0 and 10 are feasible returned values.

As an example of generating random
numbers, let’s create a simple “Lucky
Numbers” script.

To generate random numbers:

1. Begin a new document in your text
editor or IDE, to be named random.php
(Script 4.6):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/
DTD/xhtml1i-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Lucky Numbers</title>
</head>
<body>

2. Include the PHP tags and address error
management, if you need to:

<?php // Script 4.6 - random.php

Script 4.6 The rand() function generates a
random number.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Lucky Numbers</title>

7 </head>

8 <body>

9 <?php // Script 4.6 - random.php

10 /* This script generates 3 random
numbers. */

11

12 // Address error handling, if you want.

13

14 // Create three random numbers:

15 $n1 = rand (1, 99);

16 $n2 = rand (1, 99);

17 $n3 = rand (1, 99);

18

19 // Print out the numbers:

20 print "<p>Your lucky numbers are:i

21 $nkbr />

22 $n2«br />

23 $n3</p>";

24

25 >

26 </body>
27 </html>

88 Chapter4

Tour lucky numbers are:
32
63
71

o The three random
numbers created by invoking
the rand() function.

Your ucky numbers are:
23

81

2

0 Running the script again
produces different results.

Other Mathematical Functions

PHP has a number of built-in functions
for manipulating mathematical data.
This chapter introduced round(),
number_format(), and rand().

PHP has broken round() into two other
functions. The first, ceil(), rounds every
number to the next highest integer. The
second, floox(), rounds every number
to the next lowest integer.

Another function the calculator page

could make good use of is abs(), which
returns the absolute value of a number.
In case you don’t remember your abso-
lute values, the function works like this:

$number = abs(-23); // 23
$number = abs(23); // 23

In layman’s terms, the absolute value of
a number is always a positive number.

Beyond these functions, PHP supports
all the trigonometry, exponent, base
conversion, and logarithm functions
you’ll ever need. See the PHP manual
for more information.

3. Create three random numbers:

$n1 = rand (1, 99);
$n2 = rand (1, 99);
$n3 = rand (1, 99);

This script prints out a person’s lucky
numbers, like those found on the back
of a fortune cookie. These numbers are
generated by calling the rand() function
three separate times and assigning each
result to a different variable.

4. Print out the numbers:

print "<p>Your lucky numbers
are:kbr />

$nacbr />

$n2<bxr />

$n3</p>";

The print statement is fairly simple.
The numbers are printed, each on its
own line, by using the HTML break tag.

5. Close the PHP code and the HTML page:

>
</body>
</html>

6. Save the file as random.php, place it
in the proper directory for your PHP-
enabled server, and test it in your Web
browser @). Refresh the page to see
different numbers @.

The getrandmax() function returns the
largest possible random number that can be
created using rand(). This value differs by
operating system.

PHP has another function that generates
random numbers: mt_xrand(). It works simi-
larly to (but, arguably, better than) rand() and
is the smarter choice for sensitive situations
like cryptography. Also see the PHP manual’s
page for the mt_rand() function for more
discussion of generating random numbers as
a whole.

Using Numbers 89

Review and Pursue

If you have any problems with the review
questions or the pursue prompts, turn

to the book’s supporting forum (www.
LarryUllman.com/forum/).

Review

What are the four primary arithmetic
operators?

Why will the following code not work:
print "The total is $$total”;
What must be done instead?

Why must an HTML page that contains
a form that’s being submitted to a PHP
script be loaded through a URL?

What functions can be used to format
numerical values? How do you format
numbers to a specific number of
decimals?

What is the importance of operator
precedence?

What are the incremental and
decremental operators?

What are the arithmetic assignment
operators?

Pursue

Look up the PHP manual page for one
of the new functions mentioned in this
chapter. Use the links on that page to
investigate a couple of other number-
related functions PHP has.

Create another HTML form for taking
numeric values. Then create the PHP
script that receives the form data,
performs some calculations, formats
the values, and prints the results.

90 Chapter4

www.LarryUllman.com/forum/
www.LarryUllman.com/forum/

Using Strings

As introduced in Chapter 2, “Variables,”

a second category of variables used by In ThiS Chapter

PHP is strings—a collection of characters

enclosed within either single or double Creating the HTML Form 92

quotation marks. A string variable may con- Concatenating Strings 95

sist of a single letter, a word, a sen'tence, a Handling Newlines o8

paragraph, HTML code, or even a jumble

of nonsensical letters, numbers, and sym- HTML and PHP 100

bols (which might represent a password). Encoding and Decoding Strings 103

ts;gr;gusszdai);b;Ht;e most common variable Finding Substrings 107
Replacing Parts of a String m

This chapter covers PHP’s most basic
built-in functions and operators for manipu- Review and Pursue 14
lating string data, regardless of whether

the string originates from a form or is first
declared within the script. Some common
techniques will be introduced—joining
strings together, trimming strings, and
encoding strings. Other uses for strings
are illustrated in subsequent chapters.

Creating the
HTML Form

As in Chapter 3, let’s begin by creating an
HTML form that sends different values—in
the form of string variables—to a PHP
script. The theoretical example being used
is an online bulletin board or forum where
users can post a message, their email
address, and their first and last names €.

To create the HTML form:

1. Begin a new HTML document in
your text editor or IDE, to be named
posting.html (Script 5.1):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmla/
DTD/xhtml1i-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Forum Posting</title>
</head>
<body>
<!-- Script 5.1 - posting.html -->
<div><p>Please complete this form
to submit your posting:</p>

2. Create the initial form tag:

<form action="handle_post.php"
method="post">

This form will send its data to the
handle_post.php script and will use
the POST method.

Please complete this form to submit your posting:

Firet Mame:

Last Mame:

Erail Address: |

Posting:

Send My Mosting

0 This HTML form is the basis for most of
the examples in this chapter.

92 Chapter 5

Script 5.1 This form sends string data to a PHP script.

1

O]

O o ~N O

11
12

13
14

15
16

17
18

19
20

21
22

23
2%
25
26
27

<IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
<title>Forum Posting</title>
</head>
<body>
<l-- Script 5.1 - posting.html -->
<div><p>Please complete this form to
submit your posting:</p>

<form action="handle_post.php"
method="post">

<p>First Name: <input type="text"
name="first_name" size="20" /></p>

<p>Last Name: <input type="text"
name="last_name" size="20" /></p>

<p>Email Address: <input type="text"
name="email" size="30" /></p>

<p>Posting: <textarea name="posting"
rows="9" cols="30"></textarea></p>

<input type="submit" name="submit"
value="Send My Posting" />

</formy>
</div>

</body>
</html>

3. Add inputs for the first name, last name,

and email address:

<p>First Name: <input type="text"
name="first_name" size="20" /></p>
<p>Last Name: <input type="text"
name="last_name" size="20" /></p>
<p>Email Address: <input type=
"text" name="email"
size="30" /></p>

These are all basic text input types,
which were covered in Chapter 3.
Remember that the various inputs’ name
values should adhere to the rules of PHP
variable names (no spaces; must not
begin with a number; must consist only
of letters, numbers, and the underscore).

. Add an input for the posting:

<p>Posting: <textarea
name="posting" rows="9"
cols="30"></textarea></p>

The posting field is a textarea, which is
a larger type of text input box.

. Create a submit button and close

the form:

<input type="submit" name="submit"
value="Send My Posting" />
</form>

Every form must have a submit button
(or a submit image).

. Complete the HTML page:

</div>
</body>
</html>

continues on next page

Using Strings 93

7. Save the file as posting.html, place
it in the appropriate directory on your
PHP-enabled server, and view it in your
Web browser

This is an HTML page, so it doesn’t
have to be on a PHP-enabled server in
order for you to view it. But because

it will eventually send data to a PHP
script, it’s best to go ahead and place
the file on your server.

Technically speaking, all form data,
aside from uploaded files, is sent to the
handling script as strings. This includes
numeric data entered into text boxes,
options selected from drop-down menus,
checkbox or radio button values, and so
forth. Even the form in Chapter 4, “Using
Numbers,” sent strings with numeric values
to the handling script.

Many forum systems written in PHP

are freely available for your use. This book
doesn’t discuss how to fully develop one, but
a multilingual forum is developed in my PHP
6 and MySQL 5 for Dynamic Web Sites: Visual
QuickPro Guide (Peachpit Press, 2007).

This book’s Web site has a forum
where readers can post questions and other
readers (and the author) answer questions.
You can find it at www.LarryUllman.com/
forum/list.php?30.

94 Chapter 5

www.LarryUllman.com/forum/list.php?30
www.LarryUllman.com/forum/list.php?30

Concatenating Strings

Concatenation is an unwieldy term but a
useful concept. It refers to the appending
of one item onto another. Specifically, in
programming, you concatenate strings. The
period (.) is the operator for performing this
action, and it’s used like so:

$s1 = 'Hello, ';

$s2 = 'world!';

$greeting = $s1 . $s2;

The end result of this concatenation is
that the $greeting variable has a value
of Hello, world!.

Because of the way PHP deals with variables,
the same effect could be accomplished using

$greeting = "$s1$s2";

This code works because PHP replaces
variables within double quotation marks
with their value. However, the formal
method of using the period to concatenate
strings is more commonly used and is
recommended (it will be more obvious
what’s occurring in your code).

Another way of performing concatenation
involves the concatenation assignment
operator:

$greeting = 'Hello, ';
$greeting .= 'world!';

This second line roughly means “assign
to $greeting its current value plus the
concatenation of world!” The end result is
$greeting having the value Hello, world!
once again.

The posting.html script sends several
string variables to the handle_post.php
page. Of those variables, the first and last
names could logically be concatenated. It’s
quite common, and even recommended, to
take a user’s first and last names as separate
inputs, as this form does. On the other hand,
it would be advantageous to be able to refer
to the two together as one name. You'll write
the PHP script with this in mind.

Using Strings 95

To use concatenation:

1. Begin a new document in your text

editor or IDE, to be named handle_
post.php (Script 5.2):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/
DTD/xhtml1i-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Forum Posting</title>
</head>
<body>

. Create the initial PHP tag, and address

error management, if necessary:

<?php // Script 5.2 -
handle_post.php

If you don’t have display_errors

enabled, or if exrror_reporting is

set to the wrong level, see Chapter 3

for the lines to include here to alter
those settings.

. Assign the form data to local variables:

$first_name = $ POST['first_name'];
$last_name = $ POST['last_name'];
$posting = $ POST['posting'];

The form uses the POST method, so all

the form data will be available in $_POST.

This example doesn’t have a line for the
email address because you won’t be
using it yet, but you can replicate this
code to reference that value as well.

. Create a new $name variable using
concatenation:

$name = $first_name . .
$last_name;

Script 5.2 This PHP script demonstrates
concatenation, one of the most common
manipulations of a string variable. Think of
it as addition for strings.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Forum Posting</title>

7 </head>

8 <body>

9 <?php // Script 5.2 - handle_post.php

10 /* This script receives five values
from posting.html:
11 first_name, last_name, email, posting,

submit */

12

13 // Address error management, if you
want.

14

15 // Get the values from the $ POST
array:

16 $first_name = $ POST['first_name'];

17 $last name = $ POST['last name'];

18 $posting = § POST['posting'];

19

20 // Create a full name variable:

21 $name = $first_name . ' '
$last_name;

22

23 // Print a message:

24 print "«div>Thank you, $name, for
your posting:

25 <p>$posting</p></div>";

26

27 >

28 </body>
29 </html>

96 Chapter 5

Please complete this form to submit your posting:

Fie e
Lo N, s]

Email &ddress: |jm@examp|e.org

This is wy posting. It could he
more original.

Posting

Send My Posting

OThe HTML form in use...

Thank you, Jeremy Iesserstnth, for your postng:

Ths 15 tmy posting. It could be more ongmal

0 ...and the resulting PHP page.

You can link as many strings as you want
using concatenation. You can even join num-
bers to strings:
$new_string = $s1 . $s2 . $number;
This works because PHP is weakly typed,
meaning that its variables aren’t locked in to
one particular format. Here, the $number vari-
able will be turned into a string and appended
to the value of the $new_string variable.

Concatenation can be used in many
ways, even when you’re feeding arguments
to a function. An uncommon but functional
example would be

$text = nl2br($heading . $body);

The nl2bx() function, first mentioned in
Chapter 1, “Getting Started with PHP,” will
be discussed in detail next.

This act of concatenation takes two
variables plus a space and joins them
all together to create a new variable,
called $name. Assuming you entered
Elliott and Smith as the names, then
$name would be equal to Elliott Smith.

5. Print out the message to the user:

print "<divsThank you, $name, for
your posting:
<p>$posting</p></div>";

This message reports back to the user
what was entered in the form.

6. Close the PHP section and complete
the HTML page:

>
</body>
</html>

7. Save your script as handle_post.php,
place it in the same directory as
posting.html (on your PHP-enabled
server), and test both the form and the
script in your Web browser @) and @.

As a reminder, you must load the form
through a URL (http://something) so
that, when the form is submitted, the
handling PHP script is also run through
a URL.

@D If you used quotation marks of any kind
in your form and saw extraneous slashes in
the printed result, see the sidebar “Magic
Quotes” in Chapter 3 for an explanation of the
cause and for the fix.

As a reminder, it’s important to under-
stand the difference between single and
double quotation marks in PHP. Characters
within single quotation marks are treated liter-
ally; characters within double quotation marks
are interpreted (for example, a variable’s name
will be replaced by its value). See Chapter 3
for a refresher.

Using Strings 97

Handling Newlines

A common question beginning PHP
developers have involves handling newlines
in strings. The textarea form element
allows a user to enter text over multiple
lines by pressing Return/Enter. Each use

of Return/Enter equates to a newline in

the resulting string. These newlines work
within a textarea but have no effect on a
rendered PHP page @ and ©.

To create the equivalent of newlines in a
rendered Web page, you use the break
tag: <bx />. Fortunately, PHP has the
nl2br() function, which automatically
converts newlines into break tags:

$var = nl2br($var);

Let’s apply this function to handle_
post.php so that the user’s posting
retains its formatting.

To convert newlines to breaks:

1. Open handle_post.php (Script 5.2)
in your text editor or IDE, if it is not
already open.

2. Apply the n12bx() function when
assigning a value to the $posting
variable (Script 5.3):

$posting = nl2bx($ _POST['posting']);

Now $posting will be assigned the
value of $_POST['posting'], with any
newlines converted to HTML break tags.

Please complete this form to submit your posting:

First Mame: |Rocky

Last Mame: Votolato

Email Address: |N@example.edu

Here'=s one line.
Here'!=s annther line.

Here's a third line.

Paosting:
Send hy Pusling

0 Newlines in form data like text areas...

Thank vou. Rocky Votolato, for your posting:

Here's one line. Here's another ne. Here's a third line.

0 ...are not rendered by the Web browser.

Thank yo1, Rorky Votolato, for your posting:

Here's one line.
Here's another line.

Here's a thurd line.

o Now the same submitted data
is properly displayed over multiple
lines in the Web browser.

<div>Thank vou, Rockv Votolato, for vour postineg:
<p¥Here'a mme line.

HMere's another line.

Here's a third line.</p></div></hody>
</html>

0 The HTML source, corresponding to i), shows
the effect that newlines have in the Web browser
(i.e., they add spacing within the HTML source code).

98 Chapter 5

Script 5.3 When you use the nl2bx() function,
newlines entered into the posting textarea are
honored when displayed in the Web browser.

1

]

O o ~N O

11

12
13

14
15

16
17
18
19
20
21
22
23
2%

25
26
27
28
29

<IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
<title>Forum Posting</title>
</head>
<body>
<php // Script 5.3 - handle_post.php #2
/* This script receives five values
from posting.html:
first_name, last_name, email, posting,
submit */

// Address error management, if you
want.

// Get the values from the $ POST
array:

$first name = $ POST['first name'];
$last_name = $ POST['last_name'];
$posting = nl2bx($ POST['posting']);

// Create a full name variable:
$name = $first name . ' ' . $last _name;

// Print a message:

print "<div>Thank you, $name, for your
posting:

<p>$posting</p></div>";

>
</body>
</html>

3. Save the file, place it in the same direc-
tory as posting.html (on your PHP-
enabled server), and test again in your
Web browser @.

@D Newlines can also be inserted into
strings by placing the newline character—
\n—between double quotation marks.

Other HTML tags, like paragraph tags,
also affect spacing in the rendered Web page.
You can turn newlines (or any character) into
paragraph tags using a replace function, but
the code for doing so is far more involved than
just invoking n12bx().

@D Newlines present in strings sent to the
browser will have an effect, but only in the
HTML source of the page 0

Using Strings 99

HTML and PHP

As stated several times over by now, PHP
is a server-side technology that’s frequently
used to send data to the Web browser. This
data can be in the form of plain text, HTML
code, or, more commonly, both.

In this chapter’s primary example, data is
entered in an HTML form and then printed
back to the Web browser using PHP. A
potential problem is that the user can enter
HTML characters in the form, which can
affect the resulting page’s formatting @
and @—or, worse, cause security problems.

You can use a couple of PHP functions to
manipulate HTML tags within PHP string
variables:

= htmlspecialchars() converts certain
HTML tags into their entity versions.

= htmlentities() turns a// HTML tags
into their entity versions.

m strip_tags() removes all HTML and
PHP tags.

The first two functions turn an HTML tag
(for example,) into an entity version
like &1t;span>. The entity version
appears in the output but isn’t rendered.
You might use either of these if you wanted
to display code without enacting it. The
third function, strip_tags(), removes
HTML and PHP tags entirely.

You ought to watch for special tags in
user-provided data for two reasons. First,

as already mentioned, submitted HTML
would likely affect the rendered page (e.g.,
mess up a table, tweak the CSS, or just add
formatting where there shouldn’t be any). The
second concern is more important. Because
JavaScript is placed within HTML script
tags, a malicious user could submit JavaScript
that would be executed when it’s redisplayed
on the page @. This is how cross-site
scripting (XSS) attacks are performed.

Please complete this form to submit your posting:

B e [pormen |
Last IMame: |Hice

Email Address: |dr@example.net

Let's make sn ordered list:
“uls

<lixSomething«/lix
<lirZomething Else</lix
<lirZomething Hewe/lix

Posting:

Send hy Fosting

0 If the user enters HTML code in
the posting...

Thanlk yo1, Tamien Rice, for your posting:

Let's make an ordercd hist:

* Something
& Zomething Else

* Something Mew

0 ..it's rendered by the Web
browser when reprinted.

‘ Yo just executed my JavaScript code!

@ Displaying HTML submitted by a user in the
Web browser can have terrible consequences,
such as the execution of JavaScript.

100 Chapter 5

Script 5.4 This version of the PHP script addresses

HTML tags in two different ways.

1

(%]

O N O

11

12
13

14
15

16
17
18
19
20
21
22
23
24

25

26
27
28

29
30
31
32
33
34
35

<IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
<title>Forum Posting</title>
</head>
<body>
<?php // Script 5.4 - handle_post.php #3
/* This script receives five values
from posting.html:
first_name, last_name, email, posting,
submit */

// Address error management, if you
want.

// Get the values from the $ POST
array:

$first_name = $ POST['first_name'];
$last_name = $ POST['last name'];
$posting = nl2br($ POST['posting']);

// Create a full name variable:
$name = $first name . ' ' . $last_name;

// Adjust for HTML tags

$html_post = htmlentities($ _POST
['posting']);

$strip_post = strip_tags($_POST
['posting']);

// Print a message:

print "<div>Thank you, $name, for
your posting:

<p>Original: $posting</p>
<p>Entity: $html_post</p>
<p>Stripped: $strip_post</p></div>";

s
</body>
</html>

To see the impact these functions have, this
next rewrite of handle_post.php will use
them each and display the respective results.

To address HTML in PHP:

1. Open handle_post.php (Script 5.3)
in your text editor or IDE, if it is not
already open.

2. Before the print line, add (Script 5.4):

$html_post = htmlentities
($_POST['posting']);

$strip_post = strip_tags
($_POST['posting']);

To clarify the difference between how
these two functions work, apply them
both to the posting text, creating two
new variables in the process. Refer

to $_POST['posting'] here and not
$posting because $posting already
reflects the application of the nl12br()
function, which means that break tags
may have been introduced that were
not explicitly entered by the user.

3. Alter the print statement to read
as follows:

print "<div>Thank you, $name, for
your posting:

<p>Original: $posting</p>

<p>Entity: $html_post</p>

<p>Stripped: $strip_post</p></div>";

To highlight the different results, print out
the three different versions of the posting
text. First is the original posting as it

was entered, after being run through
nl2br(). Next is the htmlentities()
version of the posting, which will show
the HTML tags without rendering them.
Finally, the strip_tags() version will be
printed; it doesn’t include any HTML (or
PHP) tags.

continues on next page

Using Strings 101

4. Save the file, place it in the same direc-
tory as posting.html (on your PHP-
enabled server), and test it again in your
Web browser @ and @.

If you view the HTML source code of
the resulting PHP page @, you’ll also
see the effect that applying these
functions has.

For security purposes, it’'s almost
always a good idea to use htmlentities(),
htmlspecialchars(), or strip_tags() to
any user-provided data that’s being printed
to the Web browser. | don’t do so through the
course of this book only to minimize clutter.

The html_entity_decode() function
does just the opposite of htmlentities(),
turning HTML entities into their respective
HTML code.

Another useful function for outputting
strings in the Web browser is wordwrap().
This function wraps a string to a certain num-
ber of characters.

To turn newlines into breaks while
still removing any HTML or PHP tags, apply
nl2br() after strip_tags():

$posting =
nl2br(strip_tags($_POST['posting']));

In that line, the stxrip_tags() function will
be called first, and its result will be sent to the
nl2br() function.

Please romplete this form to submit yonr posting:

First Mame: |Laura.

Last Mame: |Burhenn

Emmail Address: [Ilb@example.com

I don't understand why it says
<enrsomething</ em>.

Posting:
Scnd My Posting

0 The HTML characters entered as part of
a posting will now be addressed by PHP.

Thank you, Laura Burhenn, for your posting:
Cngmal T don't understand why it says something.
Entity: T don't understand why it says something<fem>.

Stripped: I don't understand why it says something.

G The resulting PHP page shows the original post
as it would look if printed without modification,

the effect of htmlentities(), and the effect of
strip_tags().

<prOriginal: I don't understand why it says <emrsomething</ems.</p>
<pxEntity: I don't understand why it says &£lt:emégt:something<femegt;.</p>
<p>3tripped: I don't understand why it says something.</p></div></body>

o The HTML source for the content displayed in

102 Chapter 5

Script 5.5 This script encodes two variables
before adding them to a link. Then the values
can be successfully passed to another page.

Encoding and

Decoding Strings

1 <IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN" At the end of Chapter 3, the section
2 "http://www.w3.0rg/TR/xhtml1/DTD/ “Manually Sending Data to a Page”
5 jm:ilxﬁitlﬁiga}/j::;3 org/1999/ demonstrated how to use the thinking
xhtml" xnl:lang="en" la;1g=:'en"> behind the GET form method to send data
4 <head> to a page. In that example, instead of using
5 <meta http-equiv="Content-Type" an actual form, data was appended to the
content="text/htnl; charset-utf-8"/> URL, making it available to the receiving
3 </h;:;fle>F°I“m Postingc/title> script. | was careful to say that only single
8 <body> words could be passed this way, without
9 <php // Script 5.5 - handle_post.php #4 spaces or punctuation. But what if you
10 /* This script receives five values want to pass several words as one variable
from posting.html: value or use special characters?
11 first_name, last_name, email, posting,
submit */ To safely pass any value to a PHP script
12 through the URL, apply the urlencode()
13 // Address error management, if you function. As its name implies, this function
“ want. takes a string and encodes it (changes its
15 // Get the values from the §$ POST format) so that it can properly be passed
array: - as part of a URL. Among other things,
16 $first name = $ POST['first name']; the function replaces spaces with plus
17 $last_name = $ POST['last_name']; signs (+) and translates special characters
13 $posting = nl2br($_POST['posting’]); (for example, the apostrophe) into less
50 // Create a full name variable: problematic versions. To use this function,
21 $name = $first name . ' ' . $last name; you might code
22 . LN,
23 // brint a nessage: $string = urlencode($string);
24 print "<div>Thank you, $name, for your To demonstrate one application of
posting: . urlencode(), let's update the handle_
25 <pr$posting</p></div>'; post.php page so that it also creates
23 // Make a link to another page: a link that passes the user’s name and
28 $name = urlencode($name); email address to a third page.
29 $email = urlencode($ POST['email']);
30 print "<p>Click <a href=\" thanks.php? To use urlencode():
name=$name&email=$email \">here
 to continue.</p>"; 1. Open handle_post.php (Script 5.4)
31 , in your text editor or IDE, if it is not
2 »
3 </body> already open.
34 </html> 2. Delete the htmlentities() and

strip_tags() lines added in the
previous set of steps (Script 5.5).

continues on next page

Using Strings 103

3. Revert to the older version of the
print invocation:

print "<divs>Thank you, $name, for
your posting:
<p>$posting</p></div>";

4. After the print statement, add
the following:

$name = urlencode($name);
$email = urlencode($ POST['email']);

This script will pass these two variables
to a second page. In order for it to do
so, they must both be encoded.

Because the script has not previously
referred to or used the $email variable,
the second line both retrieves the
email value from the $_POST array and
encodes it in one step. This is the same
as having these two separate lines:

$email = $ POST['email'];
$email = urlencode($email);

5. Add another print statement that
creates the link:

print "<p>Click <a href=\"thanks.
php?name=$name&email=$email\">
here to continue.</p>";

The primary purpose of this print
statement is to create an HTML link
in the Web page, the source code of
which would be something like

<a href="thanks.php?name=Larry+
Ullman&email=larry%40example.
com">here

To accomplish this, begin by hard-coding
most of the HTML and then include the
appropriate variable names. Because the
HTML code requires that the URL for the
link be in double quotation marks—and
the print statement already uses double
quotation marks—you must escape them
(by preceding them with backslashes) in
order for them to be printed.

104 Chapter 5

6. Save the file, place it in the proper
directory of your PHP-enabled server,

Please complete this form to submit your posting:

Fisst Namc:[Christopher | and test it again in your Web browser
Last Name: [0'Peilly 0 and Q.
Ermail Address: [chris oreilly@example.com Note that clicking the link will result in

a server error, as the thanks.php script
Mothing like & pisno cover of , .
Fadichesd or Ellioctt Smith! hasn’t yet been written.

7. View the HTML source code of the
handling page to see the resulting link
in the HTML code @.

Pasting:
e Values sent directly from a form are
automatically URL-encoded prior to being sent
and decoded upon arrival at the receiving script.
O Another use of the form. You only need the urlencode() function to
manually encode data (as in the example).
Thenl you, Christopher O'Reilly, for your posting @D The urldecode() function does just the

opposite of urlencode()—it takes an encoded
URL and turns it back into a standard form.
You’ll use it less frequently, though, as PHP will
automatically decode most values it receives.

Mething like a plane cover of Radichead or Elliott Sputh!

Click here to continue.

0 The handling script now displays a link to

continues on next page
another page.

-<p>Click here

o The HTML source code of the page shows the dynamically generated link.

Using Strings 105

'Slnce you can use concatenation with Thank you, Christopher OReilly.
functions, the new print statement could be
written as follows:

e will contact you at chris. oreilly@example. com.

0 The third page in this process—to be created
by you at the end of the chapter—prints a message
based on values it receives in the URL.

print 'Click <a href="thanks.php?
name=' . $name . '&email=' .
$email . '">here to continue.';

This method has two added benefits over the
original approach. First, it uses single quota-
tion marks to start and stop the statement,
meaning you don’t need to escape the double
quotation marks. Second, the variables used
are more obvious—they aren’t buried in a lot
of other code.

You do not need to encode numeric PHP
values in order to use them in a URL, as they
do not contain problematic characters. That
being said, it won’t hurt to encode them either.

At the end of the chapter you’ll be
prompted to create thanks.php, which greets
the user by name and email address 0

Encrypting and Decrypting Strings

Frequently, in order to protect data, programmers encrypt it—alter its state by transforming it to
a form that’s more difficult, if not impossible, to discern. Passwords are an example of a value
you might want to encrypt. Depending on the level of security you want to establish, usernames,
email addresses, and phone numbers are likely candidates for encryption, too.

You can use the crypt() function to encrypt data, but be aware that no decryption option is
available (it’'s known as one-way encryption). So, a password may be encrypted using it and then
stored, but the decrypted value of the password can never be determined. Using this function in
a Web application, you might encrypt a user’s password upon registration; then, when the user
logged in, the password they entered at that time would also be encrypted, and the two pro-
tected versions of the password would be compared. The syntax for using crypt() is

$data = crypt($data);

A second encryption function is mcrypt_encrypt(), which can be decrypted using the appro-
priately named mecrypt_decrypt() function. Unfortunately, in order for you to be able to use
these two functions, the Mcrypt extension must be installed with the PHP module. Its usage
and syntax is also more complex (I discuss it in my PHP 5 Advanced: Visual QuickPro Guide
[Peachpit Press, 2007]).

If the data is being stored in a database, you can also use functions built into the database
application (for example, MySQL, PostgreSQL, Oracle, or SQL Server) to perform encryption
and decryption. Depending on the technology you're using, it most likely provides both
one- and two-way encryption tools.

106 Chapter 5

Comparing Strings

To compare two strings, you can always
use the equality operator, which you’ll
learn about in the next chapter. Other-
wise, you can use these functions:

m strcmp() indicates how two strings
compare by returning a whole
number.

m strnatcmp() is similar but linguisti-
cally more precise.

These also have case-insensitive
companions, strcasecmp() and
strnatcasecmp().

To see if a substring is contained within
another string (i.e., to find a needle in a
haystack), you’ll use these functions:

m strstr() returns the haystack from
the first occurrence of a needle to
the end.

m strpos() searches through a
haystack and returns the numeric
location of a particular needle.

Both of these functions also have a
case-insensitive alternative: stristx()
and stripos(), respectively. Each of
these functions is normally used in a
conditional to test whether the substring
was found.

Finding Substrings

PHP has a few functions you can use to
pull apart strings, search through them,
and perform comparisons. Although
these functions are normally used with
conditionals, discussed in Chapter 6,
“Control Structures,” they are important
enough that they’ll be introduced here;
later chapters will use them more formally.

Earlier in this chapter you learned how to
join strings using concatenation. Along with
making larger strings out of smaller pieces,
PHP easily lets you extract subsections
from a string. The trick to using any method
to pull out a subsection of a string is that
you must know something about the string
itself in order to know how to break it up.

The strtok() function creates a substring,
referred to as a token, from a larger string
by using a predetermined separator (such
as a comma or a space). For example, if
you have users enter their full name in one
field (presumably with their first and last
names separated by a space), you can pull
out their first name with this code:

$first = strtok($_POST['name'], ' ');
That line tells PHP to extract everything

from the beginning of $_POST['name'] until
it finds a blank space.

If you have users enter their full name in
the format Surname, First, you can find
their surname by writing

$last = strtok($ _POST['name'], ', ');

Using Strings 107

A second way to pull out sections of

a string is by referring to the indexed
position of the characters within the string.
The indexed position of a string is the
numerical location of a character, counting
from the beginning. However, PHP—Ilike
most programming languages—begins all
indexes with the number 0. For example, to
index the string Larry, you begin with the L
at position 0O, followed by a at 1, r at 2, the
second r at 3, and y at 4. Even though the
string length of Larry is 5, its index goes
from O to 4 (i.e., indexes always go from O
to the string’s length minus 1).

With this in mind, you can call on the
substr() function to create a substring
based on the index position of the
substring’s characters:

$sub = substr($string, o, 10);

The first argument is the master string
from which the substring will be derived.
Second, indicate where the substring
begins, as its indexed position (0 means
that you want to start with the first
character). Third, from that starting point,
state how many characters the substring
should contain (10). If the master string
does not have that many characters in it,
the resulting substring will end with the
end of the master string. This argument is
optional; if omitted, the substring will also
go until the end of the master string.

You can also use negative numbers to
count backward from the end of the string:

$string = ‘ardvark’;
$sub = substr($string, -3, 3); // ark

The second line says that three characters
should be returned starting at the third
character from the end. With that particular
example, you can again omit the third
argument and have the same result:

$sub = substr($string, -3); // ark

108 Chapter 5

Script 5.6 This version of handle_post.php counts
the number of words in the posting and trims the

displayed posting down to just the first 50 characters.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
<title>Forum Posting</title>
</head>
<body>
<php // Script 5.6 - handle_post.php #5
10 /* This script receives five values
from posting.html:
11 first_name, last_name, email, posting,

]

O o ~N O

submit */

12

13 // Address error management, if you
want.

14

15 // Get the values from the $ POST
array:

16 $first name = $ POST['first name'];

17 $last_name = $ POST['last_name'];

18 $posting = nl2br($ POST['posting'l);

19

20 // Create a full name variable:

21 $name = $first name . ' ' . $last_name;

22

23 // Get a word count:

24 $words = str_word_count($posting);

25

26 // Get a snippet of the posting:

27 $posting = substr($posting, 0, 50);

28

29 // Print a message:

30 print "<div>Thank you, $name, for
your posting:

31 <p>$posting...</p>

32 <p>($words words)</p></div>";

33

34 >
35 </body>
36 </html>

To see how many characters are in a string,
use strlen():

print strlen('Hello, world!'); // 13

The count will include spaces and punctuation.
To see how many words are in a string, use
str_word_count(). This function, along
with substx(), will be used in this next
revision of the handle_post.php script.

To create substrings:

1. Open handle_post.php (Script 5.5)
in your text editor or IDE, if it is not
already open.

2. Before the print statement, add the
following (Script 5.6):

$words = str_word_count($posting);

This version of the script will do two
new things with the user’s posting.
One will be to display the number of
words it contains. That information is
gathered here and assigned to the
$words variable.

3. On the nextline (also before the print
statement), add

$posting = substr($posting, 0, 50);

The second new thing this script will
do is limit the displayed posting to
its first 50 characters. You might use
this, for example, if one page shows
the beginning of a post, then a link
takes the user to the full posting. To
implement this limit, the substr()
function is called.

continues on next page

Using Strings 109

4. Update the prlnt statement to read Please complete this form to submit your posting:

print "<div>Thank you, $name, for First Name [fegna |

your posting:
<p>$posting...</p> Last Name: | Spekior
<p>($words words)</p></div>"; Ernail Address: [rs@example.edu
There are two changes here. First, Thic is o lomger posr. This is
ellipses are added after the posting to s lenger post. This is & longer
. . PO pn=st. This is a longer npost.
indicate that this is just part of the whole This is a langer pasr. This is

a longer post. This is a longer

posting. Then, within another paragraph, Dost. This 1o & longer nost.
the number of words is printed. This is a longer post. This is
a longer post. This is a longer
5. Delete the two urlencode() lines and Dosting post. This is a longer post.
i .

the corresponding print line.

Send hy Pusling

I’'m referring specifically to the code

added in the previous incarnation of

. o O Postings longer than 50 characters...
the script, linking to thanks.php.

6. Save the file, place it in the proper Thark you, Begina Spektor, far your posting
directory of your PHP-enabled server,
and test it again in your Web browser

0 and 0 (B0 words)

Tlus is a lenger post. This is a longer post. Ths...

0 ..will be cut short. The word count is
If you want to check whether a string also displayed.
matches a certain format—for example, to
see if it’s a valid email address—you need to
use regular expressions. Regular expressions
are an advanced concept in which you define
patterns and then see if a value fits the mold.
See the PHP manual or my book PHP 6 and
MySQL 5 for Dynamic Web Sites: Visual
QuickPro Guide (Peachpit Press, 2007).

110 Chapter 5

Adjusting String Case

A handful of PHP functions are used to
change the case of a string’s letters:

m ucfirst() capitalizes the first letter
of the string.

m ucwords() capitalizes the first letter
of words in a string.

m strtoupper() makes an entire string
uppercase.

m strtolower() makes an entire string
lowercase.

Due to the variance in people’s names
around the globe, there’s no flawless
way to automatically format names with
PHP (or any programming language). In
fact, | would be hesitant to alter the case
of user-supplied data unless you have
good cause to do so.

Replacing Parts
of a String

Instead of just finding substrings within a
string, as the previous section discusses,
you might find that you need to replace
substrings with new values. You can do
so using the str_ireplace() function:

$string = str_ireplace($needle,
$replacement, $haystack);

This function replaces every occurrence
of $needle found in $haystack with
$replacement. For example:

$me = 'Larry E. Ullman';

$me = str_ireplace('E.', 'Edward’,
$me);

The $me variable now has a value of Larry

Edward Ullman.

That function performs a case-insensitive
search. To be more restrictive, you can
perform a case-sensitive search using
str_replace(). In this next script, str_
ireplace() will be used to eliminate “bad
words” in submitted text.

There’s one last string-related function

I want to discuss: trim(). This function
removes any white space—spaces,
newlines, and tabs—from the beginning and
end of a string. It's quite common for extra
spaces to be added to a string variable,
either because a user enters information
carelessly or due to sloppy HTML code.

For purposes of clarity, data integrity, and
Web design, it's worth your while to delete
those spaces from the strings before you
use them. Extra spaces sent to the Web
browser could make the page appear oddly,
and those sent to a database or cookie
could have unfortunate consequences at

a later date (for example, if a password has
a superfluous space, it might not match
when it’s entered without the space).

Using Strings 111

The trim() function automatically strips
away any extra spaces from both the
beginning and the end of a string (but not
the middle). The format for using trim() is
as follows:

$string = extra space before and
after text ;

$string = trim($string);

// $string is now equal to 'extra
space before and after text'.

To use str_ireplace() and trim():

1. Open handle_post.php (Script 5.6)
in your text editor or IDE, if it is not
already open.

2. Apply trim() to the form data (Script 5.7):

$first_name =
trim($_POST['first_name']);

$last_name =
trim($_POST['last_name']);

$posting = trim($_POST['posting']);

Just in case the incoming data has
extraneous white space at its beginning
or end, the trim() function is applied.

3. Remove the use of substr():
$posting = substr($posting, 0, 50);

You’ll want to see the entire posting for
this example, so remove this invocation
of substr().

4. Before the print statement, add

$posting = str_ireplace('badword’,
"XXXXX', $posting);

This specific example flags the use of
a bad word in a posting by crossing it
out. Rather than an actual curse word,
the code uses badwozxd. (You can use
whatever you want, of course.)

Script 5.7 This final version of the handling script
applies the trim() function and then replaces
uses of badword with a bunch of Xs.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
<title>Forum Posting</title>
</head>
<body>
<php // Script 5.7 - handle_post.php #6
10 /* This script receives five values
from posting.html:
11 first_name, last_name, email, posting,

v

O 0~ O

submit */

12

13 // Address error management, if you
want.

14

15 // Get the values from the $ POST
array.

16 // Strip away extra spaces using
trim():

17 $first_name = trim($_POST
['first_name']);

18 $last_name = trim($_POST
['last_name']);

19 $posting = trim($_POST['posting'l]);

20

21 // Create a full name variable:

22 $name = $first name . ' ' . $last_name;

23

24 // Get a word count:

25 $words = str word_count($posting);

26

27 // Take out the bad words:

28 $posting = str_ireplace('badword’,
'XXXXX', $posting);

29

30 // Print a message:

31 print "«div>Thank you, $name, for your
posting:

32 <p>$posting</p>

33 <p>($words words)</p></div>";

34

3%

36 </body>
37 </html>

112 Chapter 5

Please cotnplete this form to submit your posting:

FunName g]
Lo N oz

Ernail Address: |faker@bad.example.com

I feel like using a BADWORD in
my post!

Posting:

Send My Posting

o If a user enters a word you’d prefer
they not use...

Thanl: you, Bad Poster, for your posting:
Ifeel ke usmg a JDOT0C in my post!

(% words)

0 ..you can have PHP replace it.

If you’d like to catch many bad words,
you can use multiple lines, like so:

$posting = str_ireplace
('badword1’, 'XXXXX', $posting);

$posting = str_ireplace
('badword2’, 'XXXXX', $posting);

$posting = str_ireplace
('badword3’, 'XXXXX', $posting);

5. Update the print statement so that it
no longer uses the ellipses:

print "<div>Thank you, $name, for
your posting:

<p>$posting</p>

<p>($words words)</p></div>";

6. Save the file, place it in the proper
directory of your PHP-enabled server,
and test again in your Web browser @

and ©.

@D The str_ireplace() function will even
catch bad words in context. For example, if
you entered [feel like using badwords, the
result would be / feel like using XXXXXs.

@D The str_ireplace() function can
also take an array of needle terms, an array
of replacement terms, and even an array as
the haystack. Because you may not know
what an array is yet, this technique isn’t
demonstrated here.

If you need to trim excess spaces from
the beginning or the end of a string but not
both, PHP breaks the trim() function into
two more specific functions: rtrim() removes
spaces found at the end of a string variable
(on its right side), and 1trim() handles those
at the beginning (its left). They’re both used
just like trim():

$string = rtrim($string);
$string = ltrim($string);

Using Strings 113

Review and Pursue

If you have any problems with the review
questions or the pursue prompts, turn

to the book’s supporting forum (www.
LarryUllman.com/forum/).

Review

How do you create a string?

What are the differences between using
single and double quotation marks?

What is the concatenation operator?
What is the concatenation assignment
operator?

What is the impact of having a newline
in a string printed to the browser? How
do you convert a newline character to

a break tag?

What problems can occur when HTML
is entered into form elements whose
values will later be printed back to the
Web browser? What steps can be taken
to sanctify submitted form data?

What function makes data safe to pass
ina URL?

How do you escape problematic
characters within a string? What
happens if you do not escape them?

The characters in a string are indexed
beginning at what number?

What does the trim() function do?

Pursue

Look up the PHP manual page for one
of the new functions mentioned in this
chapter. Use the links on that page to
examine a couple of other string-related
functions PHP has.

Check out the PHP manual page
specifically for the substr() function.
Read the other examples found on
that page to get a better sense of how
substr() can be used.

Write the thanks.php script that goes
along with Script 5.5. If you need
help, revisit the hello.php script from
Chapter 3 (Script 3.7).

Rewrite the print statement in the final
version of handle_post.php (Script 5.7),
so that it uses single quotation marks
and concatenation instead of double
quotation marks.

Create another HTML form for taking
string values. Then create the PHP
script that receives the form data,
addresses any HTML or PHP code,
manipulates the data in some way,
and prints out the results.

114 Chapter 5

www.LarryUllman.com/forum/
www.LarryUllman.com/forum/

Control Structures

Control structures—conditionals and loops—

are a staple of programming languages. PHP In ThiS Chapter

has two conditionals—if and switch—both

of which you’ll master in this chapter. Condi- Creating the HTML Form 16
tionals allow you to establish a test and then The if Conditional 19
perform actions based on the results. This -)

. . . . Validation Functions 122
functionality provides the ability to make Web
sites even more dynamic. Using else 126
The discussion of if conditionals requires More Operators 129
introduction of two last categories of Using elseif 138

: i logical ’

operators compan;on an.d ogica (you ve The Switch Conditional 142
already seen the arithmetic and assign-
ment operators in the previous chapters). The for Loop 146
You'll commonly use these operators in Review and Pursue 150

your conditionals, along with the Boolean

concepts of TRUE and FALSE.

Finally, this chapter introduces loops,
which allow you to repeat an action for a
specified number of iterations. Loops can
save you programming time and help you
get the most functionality out of arrays, as
you'll see in the next chapter.

Creating the
HTML Form

As with the previous chapters, the examples
in this chapter are based on an HTML form
that sends data to a PHP page. In this case,
the form is a simple registration page that
requests the following information @:

Email address

Password

Confirmation of the password

Year of birth (to verify age)

Favorite color (for customization purposes)

Agreement to the site’s terms
(@ common requirement)

The following steps walk through the creation
of this form before getting into the PHP code.

To create the HTML form:

1.

Begin a new HTML document in
your text editor or IDE, to be named
register.html (Script 6.1):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/
DTD/xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Registration Form</title>
</head>
<body>
<!-- Script 6.1 - register.html -->
<div><p>Please complete this form
to register:</p>

Please complete this form to register:

Email Address:

Password:

Confirm Password:

Year You Were Born: | yyyy

Favorite Color: [pick One -:]

[Iagree to the terms (whatever they may be).

F wrvm—
Register

0 The HTML form used in this chapter.

Script 6.1 This pseudo-registration form is the
basis for the examples in this chapter.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Registration Form</title>

7 </head>

8 <body>

9 «!-- Script 6.1 - register.html -->

10 <div><p>Please complete this form to
register:</p>

11

12 <form action="handle_reg.php"
method="post">

13

14 <p>Email Address: <input type="text"
name="email" size="30" /></p>

15

16 <p>Password: <input type="password"
name="password" size="20" /></p>

17

18 <p>Confirm Password: <input
type="password" name="confirm"
size="20" /></p>

19

code continues on next page

116 Chapter 6

Script 6.1 continued

20 <p>Year You Were Born: <input
type="text" name="year"
value="YYYY" size="4" /></p>

21

22 <p>Favorite Color:

23 <select name="color">

24 <option value="">Pick One</option>

25 <option value="red">Red</option>

26 <option value="yellow">Yellow
</option>

27 <option value="green">Green</option>

28 <option value="blue">Blue</option>

29 </select></p>

30

31 <p><input type="checkbox"
name="terms" value="Yes" /> I agree
to the terms (whatever they may
be).</p>

32

33 <input type="submit" name="submit"
value="Register" />

34

35 </form»

36

37 </div>

38 </body>

39 </html>

Fassw‘ﬂrd: LA R L L R L L L

0 A password input type, as it's being filled out.

2. Create the initial form tag:

<form action="handle_reg.php"
method="post">

As with many of the previous examples,
this page uses the POST method. The

handling script, identified by the action
attribute, will be handle_reg.php, found
in the same directory as the HTML form.

. Create inputs for the email address

and passwords:

<p>Email Address: <input
type="text" name="email"
size="30" /></p>

<p>Password: <input
type="password" name="password"
size="20" /></p>

<p>Confirm Password: <input
type="password" name="confirm"
size="20" /></p>

These lines should be self-evident. Each
line is wrapped in HTML <p></p> tags to
improve the spacing in the Web browser.
Also, note that two password inputs are
created—the second is used to confirm
the text entered in the first. Password
input types don’t reveal what the user
enters @), so it’s a standard policy to
require the user to enter passwords
twice (thereby ensuring that users know
exactly what password they provided).

. Create an input for the user’s birth year:

<p>Year You Were Born: <input
type="text" name="year"
value="YYYY" size="4" /></p>

Rather than use a drop-down menu that
displays 50 or 100 years, have users
enter their birth year in a text box. By
presetting the value attribute of the
input, you make the text box indicate
the proper format for the year

continues on next page

Control Structures 117

5. Create a drop-down menu for the user’s
favorite color:

<p>Favorite Color:

<select name="coloxr">

<option value="">Pick One</option>

<option value="red">Red</option>

<option value="yellow">Yellow
</option>

<option value="green">Green</option>

<option value="blue">Blue</option>

</select></p>

The truth is that I’'m adding this input so
that it can be used for a specific example
later in the chapter, but it might be used
to customize the look of the site after the
user logs in. Naturally, you can add as
many colors as you want here.

6. Create a check box for the user to
agree to the site’s terms:

<p><input type="checkbox"
name="terms" value="Yes" />
I agree to the terms (whatever
they may be).</p>

Many sites have some sort of terms or
licensing that the user must indicate
acceptance of, normally by checking a
box. This particular form doesn’t have
a link to where the user can read the
terms, but it probably doesn’t matter
as no one reads them (and this is just

a hypothetical example anyway). In any
case, using this element, you’'ll be able
to see how checkboxes are treated by
the handling PHP script.

7. Add a submit button and close the form:

<input type="submit" name=
"submit" value="Register" />
</form>

8. Complete the HTML page:

</div>
</body>
</html>

9. Save the file as register.html, place
it in the proper directory for your PHP-
enabled server, and load the page in
your Web browser.

@D Registration pages should always have
users confirm their password and possibly
their username or email address (whatever
information will be used to log in).

Most registration pages use either a nick-
name or an email address for the username.

If you use the email address as a username,
it’s easier for your users to remember their
registration information (a user may have

only a couple of email addresses but a gazil-
lion usernames for different sites around the
Web). Furthermore, email addresses are, by
their nature, unique to an individual, whereas
usernames are not.

118 Chapter 6

The if Conditional

The basic programming conditional is
the standard if (what used to be called
an if-then conditional—the then is
now implied). The syntax for this kind of
conditional is simple:

if (condition) {
statement(s);

}

The condition must go within parentheses;
then the statement(s) are placed within curly
brackets. The statements are commands to
be executed (for example, printing a string or
adding two numbers together). Each separate
statement (or command) must have its own
semicolon indicating the end of the line, but
there is no limit on the number of statements
that can be associated with a conditional.

Programmers commonly indent these
statements from the initial if line to indicate
that they’re the result of a conditional, but

that format isn’t syntactically required. You'll
also see people use this syntax:

if (condition)

{
}

How you arrange your curly brackets is a
matter of personal preference—and the
source of minor online skirmishes. Just
pick a style you like and stick to it.

statement(s);

Failure to use a semicolon after each
statement, forgetting an opening or closing
parenthesis or curly bracket, or using a
semicolon after either of the braces will
cause errors to occur. Be mindful of your
syntax as you code with conditionals!

PHP uses the Boolean concepts of TRUE
and FALSE when determining whether to
execute the statements. If the condition is
TRUE, the statements are executed; if it's
FALSE, they are not executed).

continues on next page

Program Flow

'

do this if
TRUE

\

Q How an IF conditional affects the program flow

of a script.

Control Structures 119

Over the course of this chapter (most of it,
anyway), a PHP script will be developed
until it fully validates the register.html
form data. To start, this first version of the
script will just create the basic shell of the
validation process, defining and using a
variable with a Boolean value that will track
the success of the validation process.

To create an if conditional:

1. Begin a new document in your
text editor or IDE, to be named
handle_reg.php (Script 6.2):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/
DTD/xhtml1i-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Registration</title>
</head>
<body>
<h1>Registration Results</h1>

2. Begin the PHP section and address
error management, if necessary:

<?php // Script 6.2 - handle_reg.php

If you don’t have display_errors
enabled, or if error_reporting is

set to the wrong level, see Chapter 3,
“HTML Forms and PHP,” for the lines to
include here to alter those settings.

3. Create a flag variable:
$okay = TRUE;

To validate the form data, a flag
variable will be used to represent
whether or not the form was properly

Script 6.2 This shell of a PHP script will be
expanded to completely validate the form data.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
5 <meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
6 <title>Registration</title>
7 </head>
8 <body>
9 <hi1>Registration Results</hi1>
10 <?php // Script 6.2 - handle_reg.php
11 /* This script receives seven values
from register.html:
12 email, password, confirm, year, terms,
color, submit */

13

14 // Address error management, if you
want.

15

16 // Flag variable to track success:

17 $okay = TRUE;

18

19 // If there were no errors, print a

success message:

20 if ($okay) {

21 print '<p>You have been
successfully registered (but
not really).</p>';

22 }

23 >

24 </body>
25 </html>

120 Chapter 6

completed. It’s called a “flag” variable
because the variable stores a simple
value that indicates a status. For
example: yes, the form was filled out
entirely or no, it was not.

The variable is initialized with a
Boolean value of TRUE, meaning that
the assumption is that the form was
completed properly. Understand that
Booleans are case-insensitive in PHP,
so you could also write True or true.

4. Print a message if everything is all right:

if ($okay) {
print '<p>You have been
successfully registered
(but not really).</p>';
}

Over the course of this chapter,
validation routines will be added to this
script, checking the submitted form
data. If any data fails a routine, then
$okay will be set to FALSE. In that case,
this conditional will also be FALSE, so

the message won'’t be printed. However,

if the data passes every validation
routine, then $okay will still be TRUE, in
which case this message will be printed.

Please complete this form to register:

Email Address:

Password: (eesessessssss

Confirm Password:

Year You Were Born: |yyyy

Favorite Color: [vellow -:]

I agree to the terms (whatever they may be).

P erree——
Register

0 Filling out the HTML form to any degree...

5. Complete the PHP section and the
HTML page:

>
</body>
</html>

6. Save the file as handle_reg.php, place
it in the proper directory for your PHP-
enabled server (in the same directory as
register.html), and test both in your
Web browser @ and @.

Of course, the fact is that this particular
script will always print the success
message, as no code will set $okay

to FALSE. You can even run the script
directly and see the same result.

@D If the statement area of your conditional
is only one line long, you technically don’t need
the curly brackets. In that case, you can write
the conditional using either of these formats:

if (condition) statement;
or

if (condition)
statement;

You may run across code in these formats.
However, | think it’s best to always use the
multiline format, with the curly brackets (as
demonstrated in the syntax introduction) to
improve consistency and minimize errors.

Registration Results

You have been successfully registered (but not really).

@ ...results in just this.

Control Structures 121

Validation Functions

PHP has dozens of functions commonly
used to validate form data. Of these
functions, the three most important ones
are used in this chapter’s examples.

First up is the empty() function, which
checks to see if a given variable has an
“empty” value. A variable is considered to
have an empty value if the variable has no
value, has a value of O, or has a value of
FALSE. In any of these cases, the function
returns TRUE; otherwise, it returns FALSE:

$varas = o;
$var2 = 'something’;
$var3 = ' '; // An empty string

empty($var); // TRUE, no defined value
empty($var1); // TRUE, empty value
empty($var2); // FALSE, non-empty value
empty($var3); // TRUE, empty value

This function is perfect for making sure
that text boxes in forms have been filled
out. For example, if you have a text input
named email and the user doesn’t enter
anything in it before submitting the form,
then the $_POST['email'] variable will exist
but will have an empty value.

Next is the isset() function, which is
almost the opposite of empty(), albeit with
a slight difference. The isset() function
returns TRUE if a variable has any value
(including O, FALSE, or an empty string).

If the variable does not have a value,
isset() returns FALSE:

$varas = o;
$var2 = 'something’;
$var3 = ' '; // An empty string

isset($var); // FALSE, no defined
value

isset($var1); // TRUE
isset($var2); // TRUE
isset($var3); // TRUE

122 Chapter 6

Script 6.3 Using if conditionals and the empty()
function, this PHP script checks if email address
and password values were provided.

1

2

o

11
12
13
14

15

16
17
18
19
20
21
2
23
24

25
26
27
28
29
30

31
32
33

35
36

37
38
39
40

<IDOCTYPE html PUBLIC "-//W3C//DTD

XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/

xhtml" xml:lang="en" lang="en">

<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Registration</title>
<style type="text/css"
media="screen">

.error { color: red; }

</style>

</head>

<body>

<h1>Registration Results</h1>

<?php // Script 6.3 - handle_reg.php #2

/* This script receives seven values

from register.html:

email, password, confirm, year, terms,

color, submit */

// Address error management, if you want.

// Flag variable to track success
$okay = TRUE;

// Validate the email address:

if (empty($_POST['email'])) {
print '<p class="error">Please
enter your email address.</p>';
$okay = FALSE;

}

// Validate the password:

if (empty($_POST['password'])) {
print '<p class="error">Please
enter your password.</p>';
$okay = FALSE;

}

// If there were no errors, print a
success message:
if ($okay) {
print <p>You have been successfully
registered (but not really).</p>';

>
</body>
</html>

The isset() function is commonly used

to validate nontext form elements like

checkboxes, radio buttons, and select menus.

Finally, the is_numeric() function returns
TRUE if the submitted variable has a valid

numerical value and FALSE otherwise.
Integers, decimals, and even strings (if
they’re a valid number) can all pass the

is_numeric() test:

$vari = 2309;

$var2 = '80.23';

$var3 = 'Bears';
is_numeric($var1); // TRUE
is_numeric($var2); // TRUE
is_numeric($var3); // FALSE

Let’s start applying these functions to the

PHP script to perform data validation.

To validate form data:

1. Open handle_reg.php (Script 6.2)
in your text editor or IDE, if it is not
already open.

2. Within the document’s head, define a

CSS class (Script 6.3):

<style type="text/css"
media="screen">
.error { color: red; }
</style>

This CSS class will be used to format

any printed registration errors.
3. Validate the email address:
if (empty($ _POST['email'])) {

print '<p class="error">Please
enter your email address.</p>';

$okay = FALSE;
}

continues on next page

Control Structures

123

This if conditional uses the code
empty($_POST['email']) as its
condition. If that variable is empty,
meaning it has no value, a value of

0, or a value of an empty string, the
conditional is TRUE. In that case, the
print statement will be executed and
the $okay variable will be assigned

a value of FALSE (indicating that
everything is not okay).

If the variable isn’t empty, then the
conditional is FALSE, the print function
is never called, and $okay will retain its
original value.

. Repeat the validation for the password:

if (empty($_POST['password'])) {
print '<p class="error">Please
enter your password.</p>';
$okay = FALSE;
}

This is a repeat of the email validation,
but with the variable name and print
statement changed accordingly. The
other form inputs will be validated in time.

All of the printed error messages are
placed within HTML paragraph tags that
have a class value of error. By doing so,
the CSS formatting will be applied (i.e.,
the errors will be printed in red, not that
it'll be apparent in this book’s figures).

. Save the file as handle_reg.php, place
it in the same directory as register.
html (on your PHP-enabled server), and
test both the form and the script in your
Web browser @ and ©.

Please complete this form to register:

Email Address:

Password:

Confirm Password: | ssseses

Year You Were Born: | 1901

Favorite Color: [Green -:]

[Tagree to the terms (whatever they may be).

Q If you omit the email address or password
form input...

Registration Results

Please enter your email address.

Please enter your password.

0 ..you’ll see messages like these.

124 Chapter 6

6. Resubmit the form in different states
of completeness to test the results
some more.

If you do provide both email address
and password values, the result will

be exactly like that in Figure C in the
section “The if Conditional,” because
the $okay variable will still have a value
of TRUE.

@D When you use functions within
conditionals, as with empty() here, it’s easy
to forget a closing parenthesis and see a parse
error. Be extra careful with your syntax when
you’re coding any control structure.

One use of the isset() function is to
avoid referring to a variable unless it exists. If
PHP is set to report notices (see “Error Report-
ing” in Chapter 3), then, for example, using
$var if it has not been defined will cause an
error. You can avoid this by coding

if (isset($var)) {
// Do whatever with $var.
}

@D Even though almost all form data is sent
to a PHP script as strings, the is_numeric()
function can still be used for values coming
from a form because it can handle strings that
contain only numbers.

@D The isset() function can take any
number of variables as arguments:

if (isset($vari, $var2)) {
print 'Both variables exist.’;

If all the named variables are set, the function
returns TRUE; if any variable is not set, the
function returns FALSE.

Control Structures 125

Using else

The next control structure we’ll discuss

is the if-else conditional. This control
structure allows you to execute one or
more statements when a condition is TRUE
and execute one or more other statements
when the condition is FALSE:

if (condition) {
statement(s);

} else {
other_statement(s);

}

The important thing to remember when
using this construct is that unless the
condition is explicitly met, the else
statement will be executed. In other words,
the statements after the else constitute
the default action, whereas the statements
after the if condition are the exception to
the rule @.

Let’s rewrite the handle_reg.php page,
incorporating an if-else conditional to
validate the birth year. In the process, a
new variable will be created, representing
the user’s age.

To use else:

1. Open handle_reg.php (Script 6.3)
in your text editor or IDE, if it is not
already open.

2. After the password validation but
before the $okay conditional, begin
a new conditional (Script 6.4):

if (is_numeric($_POST['year'])) {

Because the year variable should be a
number, you can use the is_numeric()
function to check its value, rather than
empty(). This is a basic start to this
particular form element’s validation;
later scripts will expand on this.

Program Flow

do this if
TRUE

do this if
FALSE

0 How an IF-ELSE conditional affects the
program flow of a script.

Script 6.4 By adding an if-else conditional, this
script validates the birth year and creates a new
variable in the process.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtm11/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

6 <title>Registration</title>

7 <style type="text/css"
media="screen">

8 .error { color: red; }

9 </style>

10 </head>

11 <body>

12 <h1>Registration Results</hi>

13 <?php // Script 6.4 - handle_reg.php #3

14 /* This script receives seven values
from register.html:

15 email, password, confirm, year, terms,
color, submit */

16

code continues on next page

126 Chapter 6

Script 6.4 continued

17 // Address error management, if you
want.

18

19 // Flag variable to track success:

20 $okay = TRUE;

21

22 // Validate the email address:

23 if (empty($ _POST['email'])) {

24 print <p class="error">Please
enter your email address.</p>';

25 $okay = FALSE;

P

27

28 // Validate the password:
29 if (empty($_POST['password'])) {

30 print '<p class="error">Please
enter your password.</p>';

31 $okay = FALSE;

32 }

33

34 // Validate the birth year:

35 if (is_numeric($_POST['year'])) {

36 $age = 2011 - $ POST['year'];
// Calculate age this year.

37 } else {

38 print '<p class="error">Please
enter the year you were born as
four digits.</p>';

39 $okay = FALSE;

40 }

1

42 // If there were no errors, print a

success message:

43 if ($okay) {

44 print '<p>You have been successfully
registered (but not really).</p>';

45 print "<p>You will turn $age
this year.</p>";

46}

a7 >

48 </body>

49 </html>

3. Create a new variable:

$age = 2011 - $ POST['year'];

If the $_POST['year'] variable has

a numeric value (meaning that the
conditional is TRUE), then the $age
variable is assigned the value of the
current year minus the provided year.
For now, without knowledge of PHP’s
date functions, just hard-code the
current year into the equation.

. Add an else clause:

} else {
print '<p class="error">Please
enter the year you were born
as four digits.</p>';
$okay = FALSE;
}

If the year does not have a numeric
value, an error message is printed and
the $okay variable is set to FALSE (as is
the case if any validation routine fails).

. After the final print statement but

within the same $okay conditional, also
print out the value of $age:

print "<p>You will turn $age this
year.</p>";

If the $okay variable still has a value of
TRUE, then the submitted data passed
every validation routine. This means
that the user’s age has been calculated
(in the sense of how old they’ll be at
some point this year), and it can be
printed, too.

continues on next page

Control Structures 127

6. Save your script, place it in the same
directory as register.html (on your
PHP-enabled server), and test it in your
Web browser again @, @, and @.

Another good validation function is
checkdate(), which you can use to confirm
that a date exists (or existed in the past). You
would use it like so:

if (checkdate($month, $day, $year)) {..

Please complete this form to register:

Email Address: me@example.com

Password: | ssessess

Confirm Password: |ssssssss

Year You Were Born: | yyyy

Favorite Color: | Green .:3

Iagree to the terms (whatever they may be).

0 Test the form again, without providing a year
value, and...

Registration Results

Please enter the year you were born as four digits.

G ..you'll see this.

Registration Results

You have been successfully registered (but not really).

You will turn 57 this year.

0 If the user provides a numeric value for their
birth year, the user’s age will now be calculated
and printed (assuming that an email address and
password was also provided).

128 Chapter 6

TABLE 6.1 PHP's Operators

Operator

+

*

/
%

++

XOR

Usage

Addition
Subtraction
Multiplication
Division

Modulus (remainder
of a division)
Incrementation
Decrementation

Assigns a value
to a variable

Equality
Inequality
Less than
Greater than

Less than or
equal to

Greater than
or equal to

Negation
And

And

Or

Or

Or not

Concatenation

Type

Arithmetic
Arithmetic
Arithmetic
Arithmetic
Arithmetic

Arithmetic
Arithmetic

Assignment

Comparison
Comparison
Comparison
Comparison

Comparison

Comparison

Logical
Logical
Logical
Logical
Logical
Logical

String

More Operators

Previous chapters discussed most of
PHP’s operators along with the variable
types that use them. These operators
include arithmetic for numbers: addition
(+), subtraction (-), multiplication (*), and
division (/), along with the incremental
(++) and decremental (--) shortcuts for
increasing or decreasing the value of a
number by 1. Then there is the assignment
operator (=), which is used to set the value
of a variable, regardless of type. You've
also learned about concatenation (.),
which appends one string to another.

When it comes to creating conditionals, the
comparison and logical operators are the
most important. Table 641 lists the operators
to be discussed, along with those you've
already seen.

Comparison

When the assignment operator (the

equals sign) was introduced in Chapter 2,
“Variables,” you learned that its meaning
isn’t exactly what you’d conventionally think
it to be. The line

$var = 5;

doesn’t state that $var is equal to 5 but
that it is assigned the value of 5. This is
an important distinction.

When you’re writing conditionals, you’ll
often want to see if a variable is equal to

a specific value (to match usernames or
passwords, perhaps), which you can’t do
with the equals sign alone (because that
operator is used for assigning a value, not
equating values). Instead, for comparisons,
use the equality operator (= =):

$var = 5;
if ($var == 5) { ...

continues on next page

Control Structures 129

These two lines of code together first
establish the value of $var as 5 and then
make a TRUE conditional that checks

if $var is equal to 5. This example
demonstrates the significant difference
one more equals sign makes in your
PHP code and why you must distinguish
carefully between the assignment and
comparison operators.

The next comparison operator—not equal
to—is represented by an exclamation
mark coupled with an equals sign (1=).
The remaining comparison operators

are identical to their mathematical
counterparts: less than (<), greater than (5),
less than or equal to (< =), and greater than
or equal to (> =).

As a demonstration of comparison
operators, you’ll check that the user’s birth
year is before 2011 and that the confirmed
password matches the original password.

To use comparison operators:

1. Open handle_reg.php (Script 6.4) in
your text editor or IDE, if it is not already.

2. After the password validation, check that
the two passwords match (Script 6.5):

if ($_POST['password']
I= $ POST['confirm']) {
print '<p class="error">Your
confirmed password does
not match the original
password.</p>';
$okay = FALSE;
}

To compare these two string values, use
the inequality operator. Alternatively,
you could use one of the string
comparison functions (see Chapter 5,
“Using Strings”), but != is just fine.

Script 6.5 This version of the form-handling
script uses comparison operators to validate
the password and year values.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtm11/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Registration</title>

7 <style type="text/css" media="screen">
8 .error { color: red; }

9 </style>

10 </head>

11 <body>

12 <h1>Registration Results</hi1>

13 <?php // Script 6.5 - handle_reg.php #4

14 /* This script receives seven values
from register.html:

15 email, password, confirm, year, terms,
color, submit */

16

17 // Address error management, if you want.

18

19 // Flag variable to track success:

20 $okay = TRUE;

21

22 // Validate the email address:

23 if (empty($_POST['email'])) {

24 print '<p class="error">Please enter
your email address.</p>';

25 $okay = FALSE;

26}

27

28 // Validate the password:
29 if (empty($ _POST['password'])) {

30 print '<p class="error">Please enter
your password.</p>';

31 $okay = FALSE;

32 }

33

34 // Check the two passwords for equality:
35 if ($_POST['password'] !=
$_POST['confirm']) {
36 print '<p class="error">Your
confirmed password does not match

the original password.</p>';

code continues on next page

130 Chapter 6

Script 6.5 continued

37 $okay = FALSE;

38 }

39

40 // Validate the birth year:

41 if (is_numeric($ POST['year'])) {

42 $age = 2011 - $ POST['year'];
// Calculate age this year.
43} else {
44 print <p class="error"»>Please enter

the year you were born as four
digits.</p>';

45 $okay = FALSE;

46 1}

47

48 // Check that they were born before
this year:

49 if ($_POST['year'] >= 2011) {

50 print '<p class="error">Either you

entered your birth year wrong or
you come from the futurel</p>';
51 $okay = FALSE;
52 }
53
54 // If there were no errors, print a
success message:
55 if ($okay) {

56 print '<p>You have been successfully
registered (but not really).</p>';

57 print "<p>You will turn $age this
year.</p>";

58 }

59

60

61 </body>

62 </html>

3. After the year validation, report an error

if the year is greater than or equal to 2011:

if ($_POST['year'] >= 2011) {
print '<p class="error">Either
you entered your birth year
wrong or you come from the
futurel</p>';
$okay = FALSE;
}

If the user entered their year of birth as
201 or later, it's presumably a mistake.
(If you’re reading this book after 2011,
change the year accordingly).

continues on next page

Control Structures 131

4. Save your script, place it in the same
directory as register.html (on your
PHP-enabled server), and test it in your
Web browser again @) and @©.

Before you compare two string values
that come from a form (like the password and
confirmed password), it’s a good idea to apply
the trim() function to both, to get rid of any
errant spaces. | didn’t do so here, so as not

to overcomplicate matters, but this habit is
recommended.

Another method of checking that a text
input type has been filled out (as opposed to
using the empty() function) is this:

if (strlen($var) > 0) {
// $var is okay.
}

In an if conditional, if you make the
mistake of writing $var = 5 in place of

$var == 5, you'll see that the corresponding
conditional statements are always executed.
This happens because although the condi-
tion $var == 5 may or may not be TRUE, the
condition $var = 5 is always TRUE.

Some programmers advocate reverse
conditionals—for example, writing

if (5 == $var) {

Although it looks awkward, if you inad-
vertently code 5 = $var, an error results
(allowing you to catch the mistake more eas-
ily) because the number 5 can’t be assigned
another value.

Please complete this form to register:

Email Address: me@example.com

Password: ssssssssssssssssssssssss

Confirm Password: |ssss

Year You Were Born: | 2023

Favorite Color: | Green -:!

1 agree to the terms (whatever they may be).

F a——
Register

0 Run the form once again...

Registration Results

Your confirmed password does not match the original password.

Either you entered your birth year wrong or you come from the future!

0 ..with two new validation checks in place.

132 Chapter 6

Nesting Conditionals

Besides using logical operators to cre-
ate more complex conditionals, you

can use nesting for this purpose (the
process of placing one control structure
inside another). The key to doing so is
to place the interior conditional as the
statement(s) section of the exterior
conditional. For example:

if (condition1) {
if (condition2) {
statement(s)2;
} else { // condition2
else

other_statement(s)2;
} // End of 2
} else { // conditioni else
other_statement(s)1;
} // End of 1

As you can see from this example, you
can cut down on the complexity of these
structures by using extensive indenta-
tions and comments. As long as every
conditional is syntactically correct, there
are no rules as to how many levels of
nesting you can have, whether you use
an else clause or even whether a sub-
conditional is part of the if or the else
section of the main conditional.

Logical

Writing conditions in PHP comes down

to identifying TRUE or FALSE situations.

You can do this by using functions and
comparative operators, as you’ve already
seen. Logical operators—the final operator
type discussed in this chapter—help you
create more elaborate or obvious constructs.

In PHP, one example of a TRUE condition
is simply a variable name that has a value
that isn’t zero, an empty string, or FALSE,
such as

$var = 5;
if ($var) { ...

You've already seen this with the $okay
variable being used in the handling
PHP script.

A condition is also TRUE if it makes
logical sense:

if (5 >=3) { ...

A condition will be FALSE if it refers to a
variable and that variable has no value (or
a value of O or an empty string), or if you've
created an illogical construct. The following
condition is always FALSE:

if (5 <«=3){ ...

In PHP, the exclamation mark (!) is the not
operator. You can use it to invert the TRUE/
FALSE status of a statement. For example:

$var = 'value';

if ($var) {... // TRUE

if (!$var) {... // FALSE

if (isset($var)) {... // TRUE

if (lisset($var)) {... // FALSE
if (lempty($var)) {... // TRUE

To go beyond simple one-part conditions,
PHP supports five more types of logical
operators: two versions of and (AND and &&),
two versions of or (OR and ||—a character
called the pipe, put together twice), and

continues on next page

Control Structures 133

or not (XOR). When you have two options
for one operator (as with and and or), they
differ only in precedence. For almost every
situation, you can use either version of and
or either version of or interchangeably.

Using parentheses and logical operators,
you can create even more complex if
conditionals. For an AND conditional, every
conjoined part must be TRUE in order for
the whole conditional to be TRUE. With OR,
at least one subsection must be TRUE to
render the whole condition TRUE. These
conditionals are TRUE:

if ((5<=3)O0R (5>3)){...
if ((5 > 3) AND (5 < 10)) { ...

These conditionals are FALSE:

if ((5 !'=5) AND (5 >3)) { ...
if ((5'=5)0R (5<3)){...

As you construct your conditionals,
remember two important things: first, in
order for the statements that are the result
of a conditional to be executed, the entire
conditional must have a TRUE value;
second, by using parentheses, you can
ignore rules of precedence and ensure
that your operators are addressed in the
order of your choosing.

To demonstrate logical operators, let’s add
more conditionals to the handle_reg.php
page. You'll also nest one of the year
conditionals inside another conditional (see
the sidebar “Nesting Conditionals” for more).

To use logical operators:

1. Open handle_reg.php (Script 6.5) in your
text editor or IDE, if it is not already open.

2. Delete the existing year validations
(Script 6.6).

You’ll entirely rewrite these conditionals
as one nested conditional, so it’s best to
get rid of the old versions entirely.

Script 6.6 Here the handling PHP script is
changed so that the year validation routine uses
both multiple and nested conditions. Also, the
terms of agreement check box is now validated.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Registration</title>

7 <style type="text/css" media="screen">
8 .error { color: red; }

9 </style>

10 </head>

11 <body>

12 <h1>Registration Results</h1>

13 <?php // Script 6.6 - handle_reg.php #5

14 /* This script receives seven values
from register.html:

15 email, password, confirm, year, terms,
color, submit */

16

17 // Address error management, if you want.

18

19 // Flag variable to track success:

20 $okay = TRUE;

21

22 // Validate the email address:

23 if (empty($ POST['email'])) {

24 print '<p class="error">Please enter
your email address.</p>';

25 $okay = FALSE;

26}

27

28 // Validate the password:
29 if (empty($ _POST['password'])) {

30 print '<p class="error">Please enter
your password.</p>';

31 $okay = FALSE;

32}

33

34 // Check the two passwords for equality:
35 if ($ POST['password'] !=
$ POST['confirm']) {
36 print '<p class="error">Your confirmed
password does not match the original
password.</p>';

code continues on next page

134 Chapter 6

Script 6.6 continued

37 $okay = FALSE;

38}

39

40 // Validate the year:

41 if (is_numeric($ POST['year']) AND
(strlen($_POST['year']) == 4)) {

56 } // End of 1st conditional.
57

58 // Validate the terms:

59 if (lisset($_POST['terms'])) {

60 print '<p class="error">You must
accept the terms.</p>';

61 $okay = FALSE;

62 }

63

64 // If there were no errors, print a
success message:
65 if ($okay) {

66 print '<p>You have been successfully
registered (but not really).</p>';

67 print "<p>You will turn $age this
year.</p>";

68 }

69

70 </body>

71 </html>

42
43 // Check that they were born
before 2011.

44 if ($_POST['year'] < 2011) {

45 $age = 2011 - $ POST['year'];
// Calculate age this year.

46 } else {

47 print '<p class="error">Either
you entered your birth year
wrong or you come from the
futurel</p>’;

48 $okay = FALSE;

49 } // End of 2nd conditional.

50

51 } else { // Else for 1st conditional.

52

53 print '<p class="error">Please

enter the year you were born as
four digits.</p>';

54 $okay = FALSE;

55

3. Check that the year variable is a four-

digit number:

if (is_numeric($_POST['year']) AND
(strlen($_POST['year']) == 4)) {

This conditional has two parts. The first
you've already seen—it tests for a valid
numeric value. The second part gets
the length of the year variable (using
the strlen() function) and checks if the
length value is equal to 4. Because of
the AND, this conditional is TRUE only if
both conditions are met.

. Create a subconditional to check if the

year value is before 2011

if ($_POST['year'] < 2011) {
$age = 2011 - $ POST['year'];
} else {
print '<p class="error">Either
you entered your birth year
wrong or you come from the
futurel</p>';
$okay = FALSE;
} // End of 2nd conditional.

This if-else conditional acts as the
statements part of the main conditional,
and is thus executed only if that
condition is TRUE. This if-else checks
whether the year variable is less than
2011 (i.e., the user must have been born
before the current year). If that condition
is TRUE, the user’s age is calculated as
before. Otherwise, an error message is
printed and the $okay variable is set to
FALSE (indicating a problem occurred).

Note that this conditional is just the
opposite of the previous version:
verifying that a value is less than some
number instead of greater than or equal
to that number.

continues on next page

Control Structures 135

5. Complete the main year conditional:

} else { // Else for 1st
conditional.
print '<p class="error">Please
enter the year you were born
as four digits.</p>';
$okay = FALSE;
} // End of 1st conditional.

This else section completes the
conditional begun in Step 3. If at least
one of the conditions set forth there
is FALSE, this message is printed and
$okay is set to FALSE.

6. Confirm that the terms checkbox wasn’t
ignored:

if (lisset($_POST['terms'])) {
print '<p class="error">You must
accept the terms.</p>';
$okay = FALSE;
}

If the $_POST['terms'] variable is not
set, then the user failed to check that
box and an error should be reported. To
be more exact, this conditional could be

if (lisset($_POST['terms']) AND
($_POST['terms'] == 'Yes')) {

7. Those are the only changes to the
script, so you can now save it again,
place it in the same directory as
register.html (on your PHP-enabled
server), and test it in your Web browser

again @ and @.

Please complete this form to register:

Email Address: me@example.com

Password: | seesesee

Confirm Password: | sssssees
Year You Were Born: |15

Favorite Color: [Green -:!

O T agree to the terms (whatever they may be).

G The PHP script now catches if the year isn’t
a four-digit number, as will be the case with this
form submission.

Registration Results

Please enter the year you were born as four digits.

You must accept the terms.

0 Error messages are printed if fields are incorrectly
filled out or if the terms checkbox is not checked.

136 Chapter 6

8. If desired, change your year value to be in
the future and submit the form again @.

@D 1t's another common programming
convention—which is maintained in this
book—to write the terms TRUE and FALSE in
all capitals. This isn’t a requirement of PHP,
though. For example, the following conditional
is TRUE:

if (true) {...

@D I1t’s very easy in long, complicated condi-
tionals to forget an opening or closing paren-
thesis or curly bracket, which will produce
either error messages or unexpected results.
Find a system (like spacing out your condition-
als and using comments) to help clarify your
code. Another good technique is to create the
entire conditional’s structure first, and then go
back to add the details.

@D If you have problems getting your
if-else statements to execute, print out
the values of your variables to help debug
the problem. A conditional may not be TRUE
or FALSE because a variable doesn’t have
the value you think it does.

Registration Results

Either you entered vour birth year wrong or you come from the future!

9 The year validation still checks that the date is before 2011.

Control Structures 137

Using elseif

Similar to the if-else conditional is
if-elseif (or if-elseif-else). This
conditional acts like a running if
statement and can be expanded to
whatever complexity you require:

if (conditioni) {
statement(s);

} elseif (condition2) {
other_statement(s);

}

Here’s another example (AR

if (conditioni1) {
statement(s);

} elseif (condition2) {
other_statement(s);

} else {
other_other_statement(s);

}

If present, you must always make the else
the last part of a conditional because it’s
executed unless one of the conditions

to that point has been met (again, else
represents the default behavior). You

can, however, continue to use elseifs as
many times as you want as part of one if
conditional. You may also forego an else

clause, if you don’t need a default response.

As an example of this, let’s create a
conditional that prints a message based
on the selected color value.

Program Flow

do this if
TRUE

FALSE

do this if
TRUE

04

do this if

0 How an IF-ELSEIF-ELSE conditional affects the
program flow of a script.

138 Chapter 6

Script 6.7 This multiline if-elseif-else conditional
validates that a submitted color has an allowed
value and is used to determine what type of color
the selection is.

1

15

16
17
18
19
20
21
22
23
2

25
26
27
28
29
30

31
32
33
34
35

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
<title>Registration</title>
<style type="text/css" media="screen">
.error { color: red; }
</style>
</head>
<body>
<h1>Registration Results</h1>
<?php // Script 6.7 - handle_reg.php #6
/* This script receives seven values
from register.html:
email, password, confirm, year, terms,
color, submit */

// Address error management, if you want.

// Flag variable to track success:
$okay = TRUE;

// Validate the email address:

if (empty($ POST['email'])) {
print '<p class="error">Please enter
your email address.</p>';
$okay = FALSE;

}

// Validate the password:

if (empty($ _POST['password'])) {
print '<p class="error"»>Please enter
your password.</p>';
$okay = FALSE;

}

// Check the two passwords for equality:

if ($_POST['password'] !=

$ POST['confirm']) {
print '<p class="error">Your confirmed
password does not match the original
password.</p>';

code continues on next page

To use elseif:
1. Open handle_reg.php (Script 6.6)

in your text editor or IDE, if it is not
already open.

. Before the $okay conditional, begin

a new conditional (Script 6.7):

if ($_POST['color'] == 'red') {
$color_type = 'primary’;

The color value comes from a select
menu with four possible options: red,
yellow, green, and blue. This conditional
will determine whether the user has
selected a primary—red, yellow, or
blue—or secondary (all others) color. The
first condition checks if the value of $_
POST['color'] is equal to the string red.

Be certain to use the equality operator—
two equals signs—and not the assignment
operator—one—in the conditional.

. Add an elseif clause for the

second color:
} elseif ($_POST['color'] ==
'yellow') {
$color_type = 'primary’;
The elseif continues the main
conditional begun in Step 2. The condition
itself is a replication of the condition in
Step 2, using a new color comparison.

continues on next page

Control Structures 139

4. Add elseif clauses for the other Script 6.7 continued

two colors: 37 $okay = FALSE;
} elseif ($_POST['color'] == 8}
‘green’) { 39 .
$color type = 'secondary'; 40 // Validate the year:
- ype = , \ ys 41 if (is_numeric($ POST['year']) AND
} elseif ($ POST['color'] == (strlen(s POST['year']) == 4)) {
'blue') { 42
$color_type = 'primary’; 43 // Check that they were born before
2011.
Once you understand the main concept, 44 if ($ POST['year'] < 2011) {
it's just a matter of repeating the 45 $age = 2011 - $ POST['year'];
elseifs for every possible color value. // Calculate age this year.
46 } else {
5. Add an else clause: 47 print '<p class="error">Either you
} else { entered your birth year wrong or
. . " " you come from the futurel</p>';
print '<p class="error">Please 18 Sokay = FALSE;
. -)
select your favorite 49 } // End of 2nd conditional.
color.</p>'; 50
$okay = FALSE; 51} else { // Else for 1st conditional.
52
} 53 print '<p class="error">Please enter
If the user didn’t select a color, or if the year you were born as four
they manipulated the form to submit digits.</p>';
a different color value (other than red, 2‘5‘ Sokay = FALSE;
yellow, green, or blue), none of the 56} // End of 1st conditional.
conditions will be TRUE, meaning this 57
else clause will take effect. That clause 58 // Validate the terms:
prints an error and assigns a value of 59 g P(OS!i[SStet($_P]OST['tefms)']; ?ND
o , POST['terms'] == 'Yes'
FALSE to $okay, indicating a problem. 60 print p class="error">You must
It doesn’t matter in what order the colors accept the terms.</p>';
are checked, so long as the else clause 61 $okay = FALSE;
comes last. 62}
63
64 // Validate the color:
65 if ($_POST['color'] == 'red') {
66 $color_type = 'primary’;
67 } elseif ($_POST['color'] == 'yellow') {
68 $color_type = 'primary’;
69 } elseif ($ _POST['color'] == 'green') {
70 $color_type = 'secondary’;
71} elseif ($_POST['color'] == 'blue') {
72 $color_type = 'primary';
73 } else { // Problem!
74 print '<p class="error"s>Please
select your favorite color.</p>';
75 $okay = FALSE;
76 }

code continues on next page

140 Chapter 6

Script 6.7 continued

77

78 // If there were no errors, print a
success message:

79 if ($okay) {

80 print '<p>You have been successfully
registered (but not really).</p>';

81 print "<p>You will turn $age this
year.</p>";

82 print "<p>Your favorite color is a
$color_type color.</p>";

83 }

84

85 </body>

86 </html>

Registration Results

You have been successfully registered (but not really).

You will turn 12 this year.

Your favorite color is a secondary color.

0 The script now prints a message acknowledging
the user’s color choice.

Registration Results

Please select your favorite color.

G Failure to select a color results in this
error message.

6. Within the $okay conditional, print the
user’s favorite color type:

print "<p>Your favorite color is
a $color_type color.</p>";

7. Save the script, place it in the same
directory as register.html (on your
PHP-enabled server), and test it in your
Web browser again, using different
color options @ and @.

One thing most beginner developers
don’t realize is that it’s possible—in fact, quite
easy—for a hacker to submit data to your PHP
script without using your intended HTML form.
For this reason, it’s important that you validate
the existence of expected variables (i.e., that
they are set), their type, and their values.

PHP also allows you to write elseif as
two words, if you prefer:

if (condition1) {
statement(s);

} else if (condition2) {
statement(s)2;

Control Structures 141

The Switch Conditional

Once you get to the point where you have
longer if-elseif-else conditionals, you
may find that you can save programming
time and clarify your code by using a
switch conditional instead. The switch
conditional takes only one possible
condition, normally just a variable:

switch ($var) {

case valuei:
statement(s)1;
break;

case value2:
statement(s)2;
break;

default:
statement(s)3;
break;

}

You must understand how a switch
conditional works in order to use it
properly. After the keyword switch, a
variable is identified within parentheses.
PHP will then look at each case in order,
trying to identify a matching value. Note
that, as with any other use of strings and
numbers in PHP, numeric values would
not be quoted; string values should be.
After the case value section, a colon (not
a semicolon) prefaces the associated
statements, which are normally indented
beginning on the following line.

Once PHP finds a case that matches

the value of the conditional variable, it
executes the subsequent statements.
Here’s the tricky part: once PHP has found
a matching case, it will continue going
through the switch until it either comes

to the end of the switch conditional (the
closing curly bracket) or hits a break
statement, at which point it exits the switch
construct. Thus, it's imperative that you

Script 6.8 Switch conditionals can simplify
complicated if-elseif conditionals.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtm11/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>

6 <title>Registration</title>

7 <style type="text/css" media="screen">
8 .error { color: red; }

9 </style>

10 </head>

11 <body>

12 <h1>Registration Results</h1>

13 <?php // Script 6.8 - handle_reg.php #7

14 /* This script receives seven values
from register.html:

15 email, password, confirm, year, terms,
color, submit */

16

17 // Address error management, if you want.

18

19 // Flag variable to track success:

20 $okay = TRUE;

21

22 // Validate the email address:

23 if (empty($_POST['email'])) {

24 print '<p class="error">Please enter
your email address.</p>';

25 $okay = FALSE;

26}

27

28 // Validate the password:
29 if (empty($ _POST['password'])) {

30 print '<p class="error">Please enter
your password.</p>';

31 $okay = FALSE;

32 }

33

34 // Check the two passwords for equality:
35 if ($ POST['password'] !=
$ _POST['confirm']) {

36 print '<p class="error">Your confirmed
password does not match the original
password.</p>';

37 $okay = FALSE;

38}

code continues on next page

142 Chapter 6

Script 6.8 continued

39

40 // Validate the year:

41 if (is_numeric($ POST['year']) AND
(strlen($ POST['year']) == 4)) {

42
43 // Check that they were born before
2011.
44 if ($_POST['year'] < 2011) {
45 $age = 2011 - $_POST['year'];
// Calculate age this year.

46 } else {

47 print '<p class="error">Either you
entered your birth year wrong or
you come from the futurel</p>';

48 $okay = FALSE;

49 } // End of 2nd conditional.

50

51 } else { // Else for 1st conditional.

52

53 print '<p class="error"»>Please enter
the year you were born as four
digits.</p>';

54 $okay = FALSE;

55

56 } // End of 1st conditional.

57

58 // Validate the terms:

59 if (l!isset($_POST['terms']) AND

($_POST['terms'] == 'Yes')) {

60 print '<p class="error">You must
accept the terms.</p>';

61 $okay = FALSE;

62 }

63

64 // Validate the color:
65 switch ($_POST['color']) {

66 case 'red':

67 $color_type = 'primary';
68 break;

69 case 'yellow':

70 $color_type = 'primary';
71 break;

72 case 'green':

73 $color_type = 'secondary’;
74 break;

75 case 'blue':

76 $color_type = 'primary’;
77 break;

78 default:

code continues on next page

close every case —even the default case,
for consistency’s sake—with a break (the
sidebar “Break, Exit, Die, and Continue”
discusses this keyword in more detail).

This previous switch conditional is like
a rewrite of:

if ($var == valuei1) {
statement(s)1;

} elseif ($variable == value2) {
statement(s)2;

} else {
statement(s)3;

}

Because the switch conditional uses

the value of $var as its condition, it first
checks to see if $var is equal to valuel
and, if so, executes statement(s)1. If not,

it checks to see if $var is equal to value2
and, if so, executes statement(s)2. If
neither condition is met, the default action
of the switch conditional is to execute
statement(s)3.

With this in mind, let’s rewrite the colors
conditional as a switch.

To use a switch conditional:

1. Open handle_reg.php (Script 6.7)
in your text editor or IDE, if it is not
already open.

2. Delete the extended colors conditional
(Script 6.8).

3. Begin the switch:
switch ($_POST['color']) {

As mentioned earlier, a switch
conditional takes only one condition:
a variable’s name. In this example, it's
$ POST['color'].

continues on next page

Control Structures 143

4. Create the first case: Script 6.8 continued

case 'red': 79 print '<p class="error">Please
$color_type = 'primary’; select your favorite color.</p>';
break: 80 $okay = FALSE;
’ 81 break;
The first case checks to see if 82 } // End of switch.
$_POST['color'] has a value of red. 83
If so, then, the same statement is 84 // If there were no errors, print a
executed as before. Next you include 8 ;:C((:;;EaS)esfage:
a break statement to exit the switch. 86 print ‘<p>You have been successfully
5. Add a case for the second color: registered (but not really).c/p>';
87 print "<p>You will turn $age this
case 'yellow': year.</p>";
$color_type = 'primary’; 88 print "<p>Your favorite color is a
break; $color_type color.</p>";
89 }
6. Add cases for the remaining colors: 9 »
case 'sreen': 91 </body>
g ’ 92 </html>
$color_type = 'secondary’;
break;
case 'blue’:
$color_type = 'primary’;
break;

Break, Exit, Die, and Continue

PHP includes many language constructs—tools that aren’t functions but still do something in your
scripts. For example, print is a language construct. Another example is break, which is demonstrated
in the switch. break exits the current structure, be it a switch, an if-else conditional, or a loop.

Similar to this is continue, which terminates the current iteration of a loop. Any remaining state-
ments within the loop aren’t executed, but the loop’s condition is checked again to see if the loop
should be entered.

exit and die are more potent versions of break (and they’re synonymous). Instead of exiting
the current structure, these two language constructs terminate the execution of the PHP script.
Therefore, all PHP code after a use of exit or die is never executed. For that matter, any HTML
after these constructs is never sent to the Web browser. You’ll see die used most frequently as a
heavy-handed error handling tool. exit is often used in conjunction with the headex () function.

144 Chapter 6

Registration Results

You have been successfully registered (but not really).
You will turn 47 this year.

Your favorite color is a primary color.

0 The handling script still works the same,
whether the user selects a color...

Registration Results

Please select your favorite color.

0 ...or fails to.

7. Add a default case and complete
the switch:

default:

print '<p class="error">Please

select your favorite
colorx.</p>';
$okay = FALSE;
break;
} // End of switch.

This default case is the equivalent
of the else clause used in the original
conditional.

8. Save your script, place it in the same
directory as register.html (on your
PHP-enabled server), and test it in your
Web browser again @) and Q.

@D A default case isn’t required in your
switch conditional (you could set it up so
that if the value isn’t explicitly met by one of
the cases, nothing happens), but if it’s used,
it should be the last case.

@D If you're using a string in your switch
conditional as the case value, keep in mind
that it’s case sensitive, meaning that Value
won’t match value.

Control Structures 145

The for Loop

Loops are the final type of control structure
discussed in this chapter. As suggested
earlier, loops are used to execute a section
of code repeatedly. You may want to print
something a certain number of times, or
you may want to do something with each
value in an array (i.e., a list of values). For
either of these cases, and many more,

you can use a loop. (The latter example is
demonstrated in the next chapter.)

PHP supports three kinds of loops: for,
while, and foreach. The while loop is similar
to for, but it's used most frequently when
retrieving values from a database or reading
from a text file (it's introduced in the sidebar).
The foreach loop is related to using arrays
and is introduced in the next chapter.

The for loop is designed to perform
specific statements for a determined
number of iterations (unlike while, which
runs until a condition is FALSE—similar,
but significantly different, concepts). You
normally use a dummy variable in the loop
for this purpose:

for (initial expression; condition;
closing expression) {
statement(s);

}

The initial expression is executed once:
the first time the loop is called. Then the
condition is used to determine whether
to execute the statements. The closing
expression is executed each time the
condition is found to be TRUE, but only
after the statements are executed @.

Here’s a simple loop that prints out the

numbers 1 through 10:

for ($i = 1; $i <= 10; $it++) {
print $i;

initial

expression

after
expression
do this if
TRUE

Exit loop
once
condition is
FALSE

0 This flowchart represents how a fox loop is
executed in PHP.

146 Chapter 6

Script 6.9 This script uses a PHP for loop to
dynamically generate the day of the month
drop-down menu.

1

(]

O 0 N O

15
16

17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
<title>Registration Form</title>
</head>
<body>
<!-- Script 6.9 - register.php -->
<div><p>Please complete this form to
register:</p>

<form action="handle_reg.php"
method="post">

<p>Email Address: <input type="text"
name="email" size="30" /></p>

<p>Password: <input type="password"
name="password" size="20" /></p>

<p>Confirm Password: <input
type="password" name="confirm"
size="20" /></p>

<p>Date Of Birth:

<select name="month">

<option value="">Month</option>
<option value="1">January</option>
<option value="2">February</option>
<option value="3">March</option>
<option value="4">April</option>
<option value="5">May</option>
<option value="6">June</option>
<option value="7">July</option>
<option value="8">August</option>
<option value="9">September</option>
<option value="10">October</option>
<option value="11">November</option>
<option value="12">December</option>
</select>

<select name="day">

<option value="">Day</option>
<?php // Print out 31 days:

code continues on next page

To practice with the for loop, let’s expand
the registration form so that it asks the user
for their complete birthday. A for loop can
be used to easily create a day drop-down
menu in the HTML form.

To write a for loop:

1.

Open register.html (Script 6.1) in your
text editor or IDE, if it is not already open.

Remove the existing birth year prompt
and input (Script 6.9).

You'll replace this one prompt with three
separate elements to represent the
entire birthday: month, day, and year.

Where the birth year prompt was, after
the password confirmation and before
the color option, add a prompt and a list
of months:

<p>Date Of Birth:

<select name="month">

<option value="">Month</option>
<option value="1">January</option>
<option value="2">February</option>
<option value="3">March</option>
<option value="4">April</option>
<option value="5">May</option>
<option value="6">June</option>
<option value="7">July</option>
<option value="8">August</option>
<option value="9">September</option>
<option value="10">October</option>
<option value="11">November</option>
<option value="12">December</option>
</select>

First is a textual prompt, telling the user
to supply their entire date of birth. Next
comes a select menu in which the user

can pick their birth month. The value for
each option is numeric; the viewed text
is a string (the month’s name).

continues on next page

Control Structures 147

4. Begin a select menu for the birth day: Script 6.9 continued

<select name="day"> 39 for ($i = 1; $i <= 31; $i++) {

<option value="">Day</option> 40 print "<option value=\"$i\">$i
</option>\n";

This code starts the select form a1 }

element for the user’s birth day of the 42 2>

month. The list of possible values will 43 </select>

be generated using PHP. 44 <input type="text" name="year"

value="YYYY" size="4" /></p>
5. Create a new PHP section: 45
46 <p>Favorite Color:
?

<?php 47 <select name="color">

Because PHP can be embedded within 48 <option value="">Pick One</option>
49 <option value="red">Red</option>

HTML, you’ll use it to populate the drop-

Lo 50 <option value="yellow">Yellow</option>
down menu. Begin with the standard 51 <option value="green">Green</option>
PHP tag. 52 <option value="blue">Blue</option>

6. Create a for loop to print out 31 days as 3 </select></p>
o 54
select menu options: 55 cp<input type="checkbox"
for ($1i = 1; $i <= 31; $i++) { name="terms" value="Yes" /> I agree to

print "<option value=\"$i\">$i the terms (whatever they may be).</p>

. " 6
</option>\n®; 27 <input type="submit" name="submit"
} value="Register" />
The loop begins by creating a dummy 58
variable called $i. On the first use of Zg </Form>
the loop, this variable is set to 1. Then, 61 </div>
as long as $i is less than or equal to 31, 62 </body>
the contents of the loop are executed. 63 </html>

These contents are the print line,

which creates code like

. nan . Please complete this form to register:
<option value="1">1</option>

followed by a return (created with \n). Email Address:

After this statement is executed, the $i Password:

variable is incremented by 1. Then the

condition ($1 <= 31) is checked again, Confirm Password:

and the process is repeated. Date Of Birth: (Month 1) (Day [8) [yvvy |

7. Close the PHP section:)
Favorite Color: [pick One -:]

[Iagree to the terms (whatever they may be).

You must save the file with the .php (Register)

7>

8. Save the file as registex.php.

extension now, in order for the PHP 0 The new version of the HTML form, with some
code to be executed. dynamically generated content.

148 Chapter 6

<option value="11">November</option>
<option value="12">December</option>
</select>
<select name="day">
<option value="">Day</option>
<option value="1">1</option>

<option value="2">2</option>

<option value="3">3</option>

<option value="4">4</option>

<option value="5">5</option>

<option value="6">6</option>

<option value="7">7</option>

G If you view the HTML source code for the form,
you'll see the data generated by the fox loop.

The while Loop

The second of the three types of loops
that exist in PHP—the while loop—is
designed to continue working as long as
the condition you establish is TRUE. Like
the for loop, it checks the value of the
condition before each iteration. Once the
condition becomes FALSE, the while
loop is exited:

while (condition) {
statement(s);

}

The main difference between for and
while is that while doesn’t include a
system for setting initial conditions or for
executing closing expressions.

You also have the option of using the
do...while loop, which guarantees that
the statements are executed at least
once (this isn’t necessarily true of the
while loop):

do {
statement(s);
} while (condition);

Although there is a fair amount of overlap
regarding when you can use the two
major loop constructs (while and forx),
you'll discover as you program that some-
times one is more logical than the other.
The while loop is frequently used in the
retrieval of data from a database (see
Chapter 12, “Intro to Databases”).

9. Place the file in the proper directory for
your PHP-enabled server and test it in
your Web browser @.

As long as this script is in the same
directory as handle_reg.php, you can
even fill out and submit the form as you
would with the plain HTML version.

10. If desired, view the HTML source code
to see the PHP-generated options @.

It's conventional to use simple variables
as the counters within for loops: $i, $J, $k, etc.

@D Just as you can write the if conditional
on one line if you have only one statement,
you can do the same with the while and for
loops. Again, though, this isn’t recommended.

Loops can be nested inside each other.
You can also place conditionals within loops,
loops within conditionals, and so forth.

@D Pay close attention to your loop’s condi-
tion so that the loop ends at some point.
Otherwise, you’ll create an infinite loop, and
the script will run and run and run.

Control Structures 149

Review and Pursue

If you have any problems with the review
questions or the pursue prompts, turn

to the book’s supporting forum (www.
LarryUllman.com/forum/).

Review

Why is it important to have a user
confirm their password during the
registration process?

What is the basic structure of an
if conditional in PHP? An if-else
conditional? An if-elseif? An
if-elseif-else?

What are the differences between the
empty() and isset() functions?

What is the assignment operator? What
is the equality operator?

Without knowing anything about $var,
will the following conditional be TRUE
or FALSE? Why?

if ($var = 'donut') {

What do these operators mean?
> &&

>

> 1

What is the syntax of a switch
conditional? When is a switch
most commonly used?

What is the syntax of a for loop?

Pursue

Check out the PHP manual’s pages for
the various operators.

Rewrite handle_reg.php so that it uses
a variable for the current year, instead
of hard-coding that value.

For debugging purposes, add code to
the beginning of the handle_reg.php
script that prints out the values of the
received variables. Hint: There’s a short
and a long way to do this.

Rewrite one of the versions of handle_
reg.php so that it prints the user’s
favorite color selection in the user’s
favorite color. Hint: You’ll want to use
CSS and concatenation.

Update handle_reg.php so that it
validates the user’s birthday by looking
at the three individual form elements:
month, day, and year. Create a variable
that represents the user’s birthday in
the format XX/DD/YYYY (again, you’ll
use concatenation for this).

150 Chapter 6

www.LarryUllman.com/forum/
www.LarryUllman.com/forum/

Using Arrays

The next—and last—variable type you'll
learn about in this book is the array. Arrays
are significantly different from numbers or
strings, and you can’t make the most of
programming in PHP without understand-
ing them.

Because of their unique nature, this
chapter will cover arrays more deliberately
and slowly than the other variable types.
The chapter begins with an introduction
to the concept, along with the basics of
creating and using arrays. Then it covers
multidimensional arrays and some of the
array-related functions. The chapter con-
cludes with array-string conversions and a
demonstration on how to create an array
from an HTML form.

In This Chapter

What Is an Array?

Creating an Array

Adding Items to an Array
Accessing Array Elements
Creating Multidimensional Arrays
Sorting Arrays

Transforming Between Strings
and Arrays

Creating an Array from a Form

Review and Pursue

152
154
158
161
164
168

172
176
182

What Is an Array?

Arrays constitute a complicated but very
useful notion. Whereas numbers and
strings are scalar variables (meaning they
always have only a single value), an array
is a collection of multiple values assembled
into one overriding variable. An array

can consist of numbers and/or strings
(and/or other arrays), which allows this

one variable to hold exponentially more
information than a simple string or number
can. For example, if you wanted to create a
grocery list using strings, your code would
look something like this:

$item1 = 'apples’;
$item2 = 'bananas’;
$item3 = 'oranges';

For each added item, you’d need to

create a new string. This approach is
cumbersome, and it makes it difficult to
refer back to the entire list or any specific
value later in your code. You can greatly
simplify matters by placing your entire list
into one array (say, $items), which contains
everything you need (Table 7.1).

As an array, your list can be added to, sorted,
searched, and so forth. With this context in
mind, let’s look into the syntax of arrays.

TABLE 7.1 Grocery List Array

Item Number

1

Item
apples
bananas

oranges

152 Chapter 7

Superglobals and You

Throughout this book, you’ve already
dealt with some arrays: $_SERVER,

$ GET, and $_POST. These are all special
arrays called superglobals, along with
$ COOKIE, $ SESSION, and $ ENV.

As you know, the $_POST array receives
all the data sent to the page from a form
that uses the POST method. Its indexes
are the names of the form elements, and
its values are the values of those form
elements. Therefore, $_POST['name']
refers to the value typed in a form input
created by the code

<input type="text" name="name" />

Similarly, $_GET refers to data sent from a
form using the GET method or from data
otherwise passed in the URL. $_COOKIE
refers to data stored in a cookie, and
$_SESSION refers to data stored in a
session (you’ll encounter these two in
Chapter 9, “Cookies and Sessions”).
$_ENV is like $_SERVER, containing values
pertaining to the computer on which PHP
is running.

Syntactical rules for arrays

The other variable types you’ve dealt
with—numbers and strings—have a
variable name and a corresponding value
(for example, $first_name could be
equal to Larry). Arrays also have a name,
derived using the same conventions:

m They begin with a dollar sign.

m They continue with a letter or
underscore.

m They finish with any combination of
letters, numbers, or the underscore.

But arrays differ in that they contain
multiple elements (think of each row

in Table 71 as an element). An element
consists of an index or key (the two words
can be used interchangeably) and a value.
In Table 71, the Item Number is the key,
and the Item is the value.

An array’s index is used as a reference
point to the values. An array can use either
numbers or strings as its keys (or both),
depending on how you set it up.

Generally, when you use an array it looks
the same as any other variable, except that
you include a key in square brackets ([])
to reference particular values. Whereas
$items refers to the array as a whole,
$items[1] points to a specific element in
the array (in this example, apples).

Using Arrays 153

Creating an Array

The formal method of creating an array is
to use the array() function. Its syntax is:

$list = array ('apples’, 'bananas’,
‘oranges’);

Arrays automatically begin their indexing
at 0, unless otherwise specified. In that
example—which doesn’t specify an index
for the elements—the first item, apples,
is automatically indexed at O, the second
item at 1, and the third at 2.

You can assign the index when using
array():

$list = array (1 => ‘'apples’, 2 =>
'bananas’, 3 => 'oranges');

Because PHP is very liberal when it comes
to blank space in your scripts, you can
make this structure easier to read by
writing it over multiple lines:

$list = array (

1 => ‘'apples’,

2 => 'bananas’,

3 => 'oranges'

);

Finally, the index value you specify doesn’t
have to be a number—you can use strings
as well. This indexing technique is practical
for making more meaningful lists. As an
example, you could create an array that
records the soup of the day for each day
of the week, as in the following script. This
example will also demonstrate how you
can, and cannot, print out an array (which
has already been demonstrated but is
worth rehashing).

154 Chapter 7

Script 71 The $soups array contains three
elements and uses strings for its keys.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
6 <title>No Soup for Youl</title>
7 </head>
8 <body>
9 <h1>Mmm...soups</h1>
10 <?php // Script 7.1 - soupsi.php
11 /* This script creates and prints out
an array. */
12 // Address error management, if you
want.

v

13

14 // Create the array:

15 $soups = array (

16 ‘'Monday' => 'Clam Chowder’,

17 'Tuesday' => 'White Chicken Chili',
18 'Wednesday' => 'Vegetarian'

19);

20

21 // Try to print the array:

22 print "<p>$soups</p>";

23

24 // Print the contents of the array:
25 print_r ($soups);

26

27 D

28 </body>
29 </html>

To create an array:

1.

Begin a new document in your text
editor or IDE, to be named soupsi.php
(Script 7.1):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmla/
DTD/xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>No Soup for Youl</title>
</head>
<body>
<h1>Mmm...soups</h1>

Begin the PHP section of the script and
address error handling, if necessary:

<?php // Script 7.1 - soupsi.php
If you don’t have display_errors
enabled, or if error_reporting is
set to the wrong level, see Chapter 3,

“HTML Forms and PHP,” for the lines to
include here to alter those settings.

Use the array() function to create

an array:

$soups = array (

'Monday' => 'Clam Chowder’,
'Tuesday' => 'White Chicken Chili’,
'Wednesday' => 'Vegetarian'

);

continues on next page

Using Arrays 155

This is the proper format for initializing
(creating and assigning a value to)

an array in PHP, using strings as the
indices. Because both the keys and
values are strings, you surround them
with quotation marks. As with all strings,
you can use either single or double
quotation marks, so long as you’re
mindful of other quotation marks that
might be found within the string.

. Attempt to print the array:
print "<p>$soups</p>";

As you've already seen, arrays are also
different in that they can’t be printed the
way you’d print other (scalar) variables.

. Use the print_r() function to print out
the array differently:

print_r ($soups);

In Chapter 2, “Variables,” you learned
how to use print_x() to show the
contents and structure of any variable.
Use it here so that you can see the
difference between the way this
function and print work with arrays.

. Close the PHP and the HTML sections:

>
</body>
</html>

Save your document as soupsi.php,
place it in the proper directory for your
PHP-enabled server, and test it in your
Web browser @.

Remember to run the PHP script
through a URL.

Mmm...soups

Array

Array ([Monday] => Clam Chowder [Tuesday] => White Chicken
Chili [Wednesday] => Vegetarian)

Q Because an array is structured differently than other variable types,
a request to print an array results in the word Array. On the other
hand, the print_x() function prints the array’s contents and structure.

156 Chapter7

The practice of beginning any index at O is
standard in PHP and most other programming
languages. As unnatural as this counting system
may seem, it’s here to stay, so you have two
possible coping techniques. First, manually start
all your arrays indexed at position 1. Second,
unlearn a lifetime of counting from 1. You can
decide which is easier, but most programmers
just get used to this odd construct.

You must refer to an array’s elements

via the same index used to create the array. In
the $soups example, $soups[0] has no value
even though the array obviously has a first ele-
ment (the first element normally being indexed
at O numerically).

If you use the array() function to define
an index, you can associate the first index, and

the others will follow sequentially. For example:

$list = array (1 => ‘'apples’,
'bananas’, 'oranges');

Now bananas is indexed at 2 and oranges at 3.

The range() function can also be used
to create an array of items based on a range of
values. Here are two examples:

$ten = range (1, 10);
$alphabet = range ('a', 'z');

As of PHP version 5, the range() func-
tion includes a step parameter that lets you
specify increments:

$evens = range (0, 100, 2);

If you use the var_dump() function

in your script in lieu of print_x(), it shows
not only the contents of the array but also its
structure in a more detailed format 0

An array whose keys are numbers is
called an indexed array. If the keys are strings,
it’s referred to as an associative array. Other
languages refer to associative arrays as hashes.

"Vegetarian" }

array(3) { ["Monday"]=> string(12) "Clam Chowder" ["Tuesday"|=>
string(19) "White Chicken Chili" ["Wednesday" |=> string(10)

0 The var_dump() function (used with Script 71 instead of the print_x()
function) shows how many elements are in an array and how long each

string value is.

Using Arrays 157

Adding Items
to an Array

In PHP, once an array exists, you can

add extra elements to the array with the
assignment operator (the equals sign), in a
way similar to how you assign a value to a
string or a number. When doing so, you can
specify the key of the added element or not
specify it, but in either case, you must refer to
the array with the square brackets. To add two
items to the existing $1ist array, you'd write

$list[] = 'pears’;

$1list[] "tomatoes';

If you don’t specify the key, each element is
appended to the existing array, indexed with
the next sequential number. Assuming this is
the same array from the preceding section,
which was indexed at 1, 2, and 3, pears is
now located at 4 and tomatoes at 5.

If you do specify the index, the value is assigned
at that location. Any existing value already
indexed at that point is overwritten, like so:

$1ist[3]
$1list[4]

Now, the value of the element in the fourth
position of the array is tomatoes, and no
element of $1ist is equal to oranges (that
value was overwritten by pears). With this
in mind, unless you intend to overwrite any
existing data, you’ll be better off not naming
a specific key when adding values to your
arrays. However, if the array uses strings for
indices, you’ll probably want to specify keys
so that you don’t end up with an unusual
combination of string and numeric keys.

'pears’;
'tomatoes’;

To test this process, in the following task
you’ll rewrite soupsi1.php to add more
elements to the array. To see the difference
adding more elements makes, you’ll print
out the number of elements in the array
before and after the new additions. Just

as you can find the length of a string—how

Deleting Arrays and
Array Elements

You won’t frequently need to delete

an individual item from an array, but

it’s possible to do using the unset()
function. This function eliminates a
variable and frees up the memory it
used. When applied to an array element,
that element is deleted:

unset($array[4]);
unset($array['name']);
If you apply unset() to an entire array

or any other variable type, the whole
variable is deleted:

unset($array);

unset($string);

You can also reset an array (empty it
without deleting the variable altogether)
using the array() function:

$array = array();

This has the effect of initializing the
variable: making it exist and defining
its type without assigning a value.

158 Chapter 7

Script 7.2 You can directly add elements to an
array one at a time by assigning each element a
value with the assignment operator. The count()
function will help you keep track of how many
elements the array contains.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4 <head>
5 <meta http-equiv="Content-Type"
content="text/html; charset=utf-8"/>
6 <title>No Soup for Youl</title>
7 </head>
8 <body>
9 <h1>Mmm...soups</h1>
10 <?php // Script 7.2 - soups2.php
11 /* This script creates and prints out
an array. */

14 // Create the array:

15 $soups = array (

16 'Monday' => 'Clam Chowder',

17 'Tuesday' => 'White Chicken Chili',
18 'Wednesday' => 'Vegetarian'

19)

21 // Count and print the current number
of elements:

22 $count1l = count ($soups);

23 print "<p>The soups array originally
had $count1 elements.</p>";

24

25 // Add three items to the array:

26 $soups['Thursday'] = 'Chicken
Noodle';

27 $soups['Friday'] = 'Tomato';

29

30 // Count and print the number of
elements again:

31 $count2 = count ($soups);

32 print "<p>After adding 3 more soups,

33
34 // Print the contents of the array:
35 print_r ($soups);

36

3

38 </body>
39 </html>

12 // Address error management, if you want.

28 $soups['Saturday'] = 'Cream of Broccoli';

the array now has $count2 elements.</p>";

many characters it contains—by using
strlen(), you can determine the number
of elements in an array by using count():

$how_many = count($array);

To add elements to an array:

1. Open soupsi.php in your text editor or
IDE, if it is not already.

2. After the array is initialized using
array(), add the following (Script 7.2,
to be named soups2.php):

$count1l = count ($soups);
print "<p>The soups array originally
had $counti elements.</p>";

The count() function determines
how many elements are in $soups. By
assigning that value to a variable, you
can easily print out the number.

3. Add three more elements to the array:

$soups['Thursday'] = 'Chicken Noodle';

$soups['Friday'] = 'Tomato';

$soups['Saturday'] = 'Cream of
Broccoli';

This code adds three more soups—
indexed at Thursday, Friday, and
Saturday—to the existing array.

4. Recount how many elements are in the
array, and print this value:

$count2 = count ($soups);

print "<p>After adding 3 more
soups, the array now has
$count2 elements.</p>";

This second print call is a repetition of
the first, showing how many elements
the array now contains.

5. Delete this line:
print "<p>$soups</p>";

This line isn’t needed anymore, so you
can get rid of it (you now know that you
can’t print an array that easily).

continues on next page

Using Arrays 159

6. Save your script as soups2.php,
place it in the proper directory for
your PHP-enabled server, and test
it in your Web browser @.

Merging Arrays

PHP has a function that allows you
to append one array onto another.

Think of it as concatenation for arrays.

The function, array_merge(), works
like so:

$new_array = array_merge
($array1, $array2);

You could also write the soups2.php

page using this function:

$soups2 = array (

'Thursday' => 'Chicken Noodle’,

'Friday’ => 'Tomato’,

'Saturday’ => 'Cream of
Broccoli'

)

$soups = array_merge($soups,
$soups2);

You could even accomplish this result

with the plus sign (thus adding two

arrays together):

$soups = $soups + $soups2;

or

$soups += $soups2;

Be very careful when you directly add ele-
ments to an array. There’s a correct way to do it—

$array[] = 'Add This';
or

$array[1] = 'Add This';
—and an incorrect way:
$array = 'Add This';

If you forget to use the brackets, the new
value will replace the entire existing array,
leaving you with a simple string or number.

@D The code
$array[] = 'Value';
creates the $array variable if it doesn’t yet exist.

While working with these arrays, I'm
using single quotation marks to enclose both
the keys and the values. Nothing needs to

be interpolated (like a variable), so double
quotation marks aren’t required. It’s perfectly
acceptable to use double quotation marks,
though, if you want to.

You don’t (and, in fact, shouldn’t) quote
your keys if they’re numbers, variables, or con-
stants (you’ll learn about constants in Chapter 8,
“Creating Web Applications”). For example:

$day = 'Sunday’;
$soups[$day] = 'Mushroom’;

@D The sizeof() function is an alias to
count(). It also returns the number of ele-
ments in an array.

Mmm...soups

The soups array originally had 3 elements.

After adding 3 more soups, the array now has 6 elements.

Array ([Monday] => Clam Chowder [Tuesday] => White Chicken Chili

0 A direct way to ensure
that the new elements were
successfully added to the

[Wednesday] => Vegetarian [Thursday] => Chicken Noodle [Friday] => Tomato | array is to count the number

[Saturday] => Cream of Broccoli)

of elements before and after

you make the additions.

160 Chapter 7

Accessing Array
Elements

Regardless of how you establish an array,
there’s only one way to retrieve a specific
element (or value) from it, and that is to
refer to its index:

print "The first item is $array[o]";

If the array uses strings for indexes, which
should be quoted, you must adjust for the
quotation marks you’d use around the
index, because they conflict with the print
syntax. This line will cause problems @):

print "<p>Monday's soup is
$soups['Monday'].</p>";

To combat this issue, you can wrap the whole

array construct within curly brackets @:

print "<p>Monday's soup is
{$soups['Monday']}.</p>";

Ironically, the feature that makes arrays so

useful—being able to store multiple values
in one variable—also gives it a limitation

the other variable types don’t have: You
must know the keys of the array in order
to access its elements. If the array was set
using strings, like the $soups array, then
referring to $soups[1] points to nothing @.
For that matter, because indexes are
case-sensitive, $soups['monday'] is
meaningless because Clam Chowder
was indexed at $soups['Monday'].

The fastest and easiest way to access all

the values of an array is to use a foreach
loop. This construct loops through every

element of an array:

foreach ($array as $key => $value) {
print "<p>Key is $key. Value
is $value</p>";

}

With each iteration of the loop, the current
array element’s key will be assigned to
the $key variable and the value to $value.
Note that you can use any variable here:
$k and $v are likely choices, too.

You can now write a new soups script to
use this knowledge.

Parse error: syntax error, unexpected T_ENCAPSED_AND_WHITESPACE,
expecting T_STRING or T_VARIABLE or T_NUM_STRING in /Users
Marryullman/Sites/phpvqs4/soups2.php on line 37

o Referencing a specific element in an associative array will cause parse errors

within double quotation marks.

| Monday's soup is Clam Chowder.

0 Wrapping an array element
reference in curly brackets is one
way to avoid parse errors.

Notice: Undefined offset: 1 in /Users/larryullman/Sites/phpvgs4/soups2.php on line 37

o Referring to an array index that does not exist will create an Undefined offset or Undefined

Index notice.

Using Arrays 161

To print the values of any array:

1.

Begin a new document in your text
editor or IDE (Script 7.3, to be named
soups3.php):
<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/
DTD/xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>No Soup for Youl</title>
</head>
<body>
<h1>Mmm...soups</h1>

. Start the PHP section of the page and
address error management, if you need:

<?php // Script 7.3 - soups3.php
Create the $soups array:

$soups = array (

'Monday' => 'Clam Chowder’,
'Tuesday' => 'White Chicken Chili',
'Wednesday' => 'Vegetarian’,
'Thursday' => 'Chicken Noodle',
'Friday' => 'Tomato’,

'Saturday' => 'Cream of Broccoli'
)

Here the entire array is created at
once, although you could use the same
method (creating the array in steps) as
in the preceding script, if you’d rather.

Script 7.3 A foreach loop is the easiest way to
access every element in an array.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
5 <meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
6 <title>No Soup for Youl</title>
7 </head>
8 <body>
9 <h1>Mmm...soups</h1>
10 <?php // Script 7.3 - soups3.php
11 /* This script creates and prints out
an array. */

12

13 // Address error management, if you
want.

14

15 // Create the array:

16 $soups = array (

17 'Monday' => 'Clam Chowder',

18 'Tuesday' => 'White Chicken Chili',
19 'Wednesday' => 'Vegetarian',

20 'Thursday' => 'Chicken Noodle',

21 ‘'Friday' => 'Tomato',

22 'Saturday' => 'Cream of Broccoli’
23);

24

25 // Print each key and value:

26 foreach ($soups as $day => $soup) {

27 print "<p>$day: $soup</p>\n";
28 }

29

30

31 </body>

32 </html>

162 Chapter 7

4. Create a foreach loop to print out each
day’s soup:

foreach ($soups as $day => $soup)
{

print "<p>$day: $soup</p>\n";
}

The foreach loop iterates through
every element of the $soups array,
assigning each index to $day and each
value to $soup. These values are then
printed out within HTML paragraph
tags. The print statement concludes
with a newline character (created by
\n), which will make the HTML source
code of the page more legible.

5. Close the PHP section and the HTML page:

7>
</body>
</html>

6. Save the page as soups3.php, place it
in the proper directory for your PHP-
enabled server, and test it in your Web
browser @.

Mmm...soups

Monday: Clam Chowder
Tuesday: White Chicken Chili
Wednesday: Vegetarian
Thursday: Chicken Noodle
Friday: Tomato

Saturday: Cream of Broccoli

One option for working with arrays is to
assign a specific element’s value to a separate
variable using the assignment operator:

$total = $array[i];

By doing this, you can preserve the original
value in the array and still manipulate the
value separately as a variable.

@D If you only need to access an array’s
values (and not its keys), you can use this
foreach structure:

foreach ($array as $value) {
// Do whatever.

}

@D Another way to access all of an array’s
elements is to use a for loop:

for ($n = 0; $n < count($array);
$n++) {
print "The value is $array[$n]";

}

@D The curly brackets are used to avoid
errors when printing array values that have
strings for keys. Here are two examples where
using quotation marks is not problematic, so
the curly brackets aren’t required:

$name = trim ($array['name']);
$total = $ POST['qty'] *
$_POST['price'];

@D Curly brackets can also be used to sepa-
rate a variable reference from a dollar sign or
other characters:

print "The total is ${$total}.";

0 The execution of the loop for every element

in the array generates this page. The foreach
construct allows the script to access each key and
value without prior knowledge of what they are.

Using Arrays 163

Creating
Multidimensional Arrays

Multidimensional arrays are both simple
and complicated at the same time. The
structure and concept may be somewhat
difficult to grasp, but creating and
accessing multidimensional arrays in
PHP is surprisingly easy.

You use a multidimensional array to create
an array containing more information than
a standard array. You accomplish this by
using other arrays for values instead of just
strings and numbers. For example:

$fruits = array ('apples’, ‘bananas’,
‘oranges’);

$meats = array ('steaks’,
'hamburgers', 'pork chops');

$groceries = array (

"fruits' => $fruits,

'meats' => $meats,

‘other' => 'peanuts’,

‘cash' => 30.00

);

This array, $groceries, now consists of

one string (peanuts), one floating-point

number (30.00), and two arrays ($fruits

and $meats).

Pointing to an element in an array within an
array can seem tricky. The key (pardon the
pun) is to continue adding indices in square
brackets as necessary, working from the
outer array inward. With that example,
bananas is at $groceries['fruits'][1].
First, you point to the element (in this case,
an array) in the $groceries array by using
['fruits']. Then, you point to the element
in that array based on its position—it’s the
second item, so you use the index [1].

In this next task, you’ll write a script
that creates another multidimensional
array example.

Script 7.4 The multidimensional $books array
stores a lot of information in one big variable.

1

12

13
14
15

16
17
18

19
20
21

22
23
24
25
26
27
28
29

<IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/
xhtmli-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<titlesLarry Ullman's Books and
Chapters</title>
</head>
<body>
<h1>Some of Larry Ullman's Books</h1>
<?php // Script 7.4 - books.php
/* This script creates and prints out
a multidimensional array. */
// Address error management, if you
want.

// Create the first array:

$phpvgs = array (1 => 'Getting Started
with PHP', 'Variables', 'HTML Forms

and PHP', 'Using Numbers');

// Create the second array:
$phpadv = array (1 => 'Advanced
PHP Techniques', 'Developing Web
Applications', 'Advanced Database
Concepts', 'Security Techniques');

// Create the third array:

$phpmysql = array (1 => 'Introduction
to PHP', 'Programming with PHP',
'Creating Dynamic Web Sites',
'Introduction to MySOL');

// Create the multidimensional array:
$books = array (

'PHP VOS' => $phpvgs,

'PHP Advanced VQP' => $phpadyv,
'PHP and MySQL VQP' => $phpmysql
)

code continues on next page

164 Chapter 7

Script 7.4 continued

30
31

32

33

34
35
36
37
38
39
40
#
02

// Print out some values:

print "<p>The third chapter of
my first book is <i>{$books['PHP
VOS'1[3]1}</i>.</p>";

print "<p>The first chapter of my
second book is <i>{$books['PHP
Advanced VQP'][1]}</i>.</p>";

print "<p>The fourth chapter of
my fourth book is <i>{$books['PHP
and MySOL VOP'][4]}</i>.</p>";

// See what happens with foreach:
foreach ($books as $key => $value) {
print "<p>$key: $value</p>\n";

}

>
</body>
</html>

To use multidimensional arrays:

1. Begin a new document in your text

editor or IDE, to be named books.php
(Script 7.4):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmla/
DTD/xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Larry Ullman's Books and
Chapters</title>
</head>
<body>
<h1>Some of Larry Ullman's
Books</h1>

. Create the initial PHP tags, and address

error management, if necessary:

<?php // Script 7.4 - books.php

. Create the first array:

$phpvgs = array (1 => 'Getting
Started with PHP', 'Variables’,
'"HTML Forms and PHP', 'Using
Numbers');

To build up the multidimensional array,
you'll create three standard arrays

and then use them as the values for

the larger array. This array (called
$phpvgs, which is short for PHP for the
Web: Visual QuickStart Guide) uses
numbers for the keys and strings for the
values. The numbers begin with 1 and
correspond to the chapter numbers.
The values are the chapter titles.

continues on next page

Using Arrays 165

4. Create the next two arrays:

$phpadv = array (1 => 'Advanced
PHP Techniques', 'Developing Web
Applications', 'Advanced
Database Concepts', 'Security
Techniques');

$phpmysql = array (1 =>
'Introduction to PHP',
'Programming with PHP’,
'Creating Dynamic Web Sites’,
'Introduction to MySOL');

For each array, add only the book’s first
four chapters for simplicity’s sake.

. Create the main, multidimensional array:

$books = array (

'PHP VQS' => $phpvgs,

'PHP Advanced VOP' => $phpadyv,
'PHP and MySOL VQP' => $phpmysql
)

The $books array is the master array
for this script. It uses strings for keys
(which are shortened versions of the
book titles) and arrays for values. Use
the array() function to create it, as you
would any other array.

6. Print out the name of the third chapter of

the PHP Visual QuickStart Guide book:

print "<p>The third chapter of
my first book is <i>{$books['PHP
VQS'1[3]1}</i>.</p>";

Following the rules stated earlier, all
you need to do to access any individual
chapter name is to begin with $books,
follow that with the first index (['PHP VQS']),
and follow that with the next index ([3]).
Because you're placing this in a print call,
you enclose the whole construct in curly
brackets to avoid parse errors.

Print out two more examples:

print "<p>The first chapter of
my second book is <i>{$books
['PHP Advanced VQP'][1]}</i>.</p>";
print "<p>The fourth chapter of
my fourth book is <i>{$books
['PHP and MySQL VQP'1[4]}</i>.</p>";

. Run the $books array through a

foreach loop to see the results:

foreach ($books as $key => $value)

{
print "<p>$key: $value</p>\n";

}

Some of Larry Ullman's Books

The third chapter of my first book is HTML Forms and PHP.
The first chapter of my second book is Advanced PHP Techniquies.

The fourth chapter of my fourth book is Intreduction to MySQL.

PHP VQS: Array
PHP Advanced VQP: Array

PHP and MySQL VQP: Array

o The first three lines are generated
by print statements. The last three
show the results of the foreach

loop (and the notices come from

attempting to print an array).

166 Chapter 7

PHP V(5

Chapter | is Getting Started with PHP
Chapter 2 is Variables

Chapter 3 is HTML Forms and PHP
Chapter 4 is Using Numbers

PHP Advanced VQP

Chapter 1 is Advanced PHP Techniques
Chapter 2 is Developing Web Applications
Chapter 3 is Advanced Database Concepts
Chapter 4 is Security Techniques

PHP and MySQL VQP

Chapter | is Introduction to PHP
Chapter 2 is Programming with PHP
Chapter 3 is Creating Dynamic Web Sites
Chapter 4 is Introduction to MySQL

0 One foreach loop within another can access
every element of a two-dimensional array.

Array
[PHF VQS5] => Array

(
[1] => Getting Started with PHP
[2] == Variables
|3) => HTML Forms and FHP
4] => Using Numbers

)
[FHP Advanced VQF] => Array

] => Rdvanced PHP Techniques

] =+ Develuping Web Applications
] => Advanced Database Concepts
] => Security Techniques

[FHF and MySQL VQP] => Array
(
[1] = Introduction to DHP
[2] => Programming with PHP
[3] => Creating Dynamic Web Sites
[4] == Introduction to MySQL

)

G The print_rx() function shows the structure
and contents of the $books array.

The $key variable will be assigned each
abbreviated book title, and the $value
variable ends up containing each
chapter array.

9. Close the PHP section and complete
the HTML page:

>
</body>
</html>

10. Save the file as books.php, place it in the
proper directory for your PHP-enabled
server, and test it in your browser 0.

@D To access every element of every array,
you can nest two foreach loops like this 0:

foreach ($books as $title =>
$chapters) {
print "<p>$title”;
foreach ($chapters as $number =>
$chapter) {
print "
Chapter $number
is $chapter”;
}

print '</p>';

Using the print_r() or var_dump()
function (preferably enclosed in HTML <pre>
tags for better formatting), you can view an
entire multidimensional array G

You can create a multidimensional

array in one statement by using a series of
nested array() calls (instead of using several
steps as in this example). However, doing so
isn’t recommended, because it’s all too easy
to make syntactical errors as a statement
becomes more and more nested.

@D Although all the subarrays in this
example have the same structure (hnumbers for
indexes and four elements), that isn’t required
with multidimensional arrays.

To learn about the greater “Larry Ullman
Collection,” including the three books refer-
enced here, head to www.LarryUllman.com.

Using Arrays 167

www.LarryUllman.com

Sorting Arrays

PHP supports a variety of ways to sort an
array (sort refers to an alphabetical sort if
the values being sorted are strings, or a
numerical sort if the values being sorted
are numbers). When you’re sorting an
array, you must keep in mind that an array
consists of pairs of keys and values. Thus,
an array can be sorted based on the keys
or the values. This is further complicated
by the fact that you can sort the values and
keep the corresponding keys aligned, or
you can sort the values and have them be
assigned new keys.

To sort the values without regard to the
keys, you use sort(). To sort these values
(again, without regard to the keys) in
reverse order, you use rsort(). The syntax
for every sorting function is:

function($array);

So, sort() and rsort() are used as follows:

sort($array);
rsort($array);

To sort the values while maintaining the
correlation between each value and its
key, you use asort(). To sort the values
in reverse while maintaining the key
correlation, you use arsort().

To sort by the keys while maintaining the
correlation between the key and its value,
you use ksort(). Conversely, krsort()
sorts the keys in reverse. Table 7.2 lists all
these functions.

Finally, shuffle() randomly reorganizes
the order of an array.

As an example of sorting arrays, you'll
create a list of students and the grades
they received on a test, and then sort this
list first by grade and then by name.

TABLE 7.2 Array Sorting Functions

Function
sort()
rsort()

asort()

arsort()

ksort()

krsort()

Sorts By
Values

Values
(inverse)

Values

Values
(inverse)

Keys

Keys (inverse)

Maintains
Key-Values?

No
No

Yes

Yes

Yes

Yes

168 Chapter 7

Script 7.5 PHP provides a number of different
functions for sorting arrays, including arsort()
and ksort().

1 <IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">

4 <head>

5 <meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

6 <titlesMy Little Gradebook</title>

7 </head>

8 <body>

9 <?php // Script 7.5 - sort.php

10 /* This script creates, sorts, and
prints out an array. */

11

12 // Address error management, if you
want.

13

14 // Create the array:

15 $grades = array(

16 'Richard' => 95,

17 'Sherwood' => 82,

18 'Toni' => 98,

19 'Franz' = 87,

20 'Melissa' => 75,

21 'Roddy' => 85

2)

23

24 // Print the original array:

25 print '<p>Originally the array looks
like this:
';

26 foreach ($grades as $student =>

$grade) {
27 print "$student: $grade
\n";
28}
29 print </p>';

30

31 // Sort by value in reverse order,
then print again:

32 arsort ($grades);

33 print '<p>After sorting the array by
value using arsort(), the array looks
like this:
';

code continues on next page

To sort an array:

Begin a new document in your text
editor or IDE, to be named sort.php
(Script 7.5):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmla/
DTD/xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>My Little Gradebook</
title>
</head>
<body>

. Begin the PHP section, and address

error handling, if desired:

<?php // Script 7.5 - sort.php

. Create the array:

$grades = array(

'Richard' => 95,

'Sherwood' => 82,

'Toni' => 98,

'Franz' => 87,

'Melissa' => 75,

'Roddy’ => 85

);

The $grades array consists of six
students’ names along with their
corresponding grades. Because the
grades are numbers, they don’t need
to be quoted when assigning them.

continues on next page

Using Arrays 169

4. Print a caption, and then print each ele-

ment of the array using a foreach loop:

print '<p>Originally the array
looks like this:
';
foreach ($grades as $student =>
$grade) {
print "$student: $grade
\n";
}
print '</p>';
As the $grades array will be printed three
times, captions indicating each state of
the array will be useful. At first, the script
prints the array in the original order. To
do that, use a foreach loop, where each
index (the student’s name) is assigned to
$student, and each value (the student’s
grade) is assigned to $grade. The final
print call closes the HTML paragraph.

. Sort the array in reverse order by value
to determine who has the highest grade:

arsort ($grades);

To determine who has the highest
grade, you need to use arsort()
instead of asort(). The latter, which
sorts the array in numeric order, would
order the grades 75, 82, 85, and so on,
rather than the desired 98, 95, 87.

You also must use arsort() and not
rsort() in order to maintain the key-
value relationship (rsort() would
eliminate the student’s name associated
with each grade).

. Print the array again (with a caption),
using another loop:

print '<p>After sorting the array
by value using arsort(), the
array looks like this:
';
foreach ($grades as $student =>
$grade) {
print "$student: $grade
\n";
}

print '</p>';

Script 7.5 continued

34

35
36
37
38
39
40
41

42

V]
44
45
46
4
48
49

foreach ($§grades as $student =>
$grade) {

print "$student: $grade
\n";
}

print '</p>';

/1 Sort by key, then print again:
ksort ($grades);
print '<p>After sorting the array by
key using ksort(), the array looks
like this:
';
foreach ($grades as $student =>
$grade) {

print "$student: $grade
\n";
}

print '</p>';
fod

</body>
</html>

170 Chapter?7

Originally the array looks like this:
Richard: 93

Sherwowd: 82

Toni: 98

Franz: 87

Melissa: 75

Roddy: 85

Toni: 98
Richard: 95
Franz: 87
Roddy: 85
Sherwood: 82
Melissa: 75

After sorting the array by key using ksort(), the array looks like this:
Franz: 87

Melissa: 75

Richard: 9%

Raoddy: 85

Sherwood: 82

Toni: 98

After sorting the array by value using arsori(), the array looks like this:

OYou can sort an array in a number of ways with
varied results. Pay close attention to whether you
want to maintain your key-value association when
choosing a sort function.

7. Sort the array by key to put the array in
alphabetical order by student name:

ksort ($grades);

The ksort() function organizes the
array by key (in this case, alphabetically)
while maintaining the key-value
correlation.

8. Print a caption and the array one last time:

print '<p>After sorting the array
by key using ksort(), the array
looks like this:
';

foreach ($grades as $student =>
$grade) {
print "$student: $grade
\n";

}

print '</p>';

9. Complete the script with the standard
PHP and HTML tags:

>
</body>
</html>

10. Save your script as sort.php, place
it in the proper directory for your
PHP-enabled server, and test it in
your Web browser @.

@D Because each element in an array must
have its own unique key, the $grades array
will only work using unique student names.

@D The natsort() and natcasesort()
functions sort a string (while maintaining
key-value associations) using natural order.
The most obvious example of natural order
sorting is that it places name2 before name12,
whereas sort() orders them name12 and
then name2.

The usort(), uasort(), and ursort()
functions let you sort an array using a user-
defined comparison function. These functions
are most often used with multidimensional
arrays.

Using Arrays 171

Transforming Between
Strings and Arrays

Now that you have an understanding of
both strings and arrays, this next section
introduces two functions for switching
between the formats. The first, implode(),
turns an array into a string. The second,
explode(), does just the opposite. Here
are some reasons to use these functions:

m To turn an array into a string in order to
pass that value appended to a URL (which
you can’t do as easily with an array)

m To turn an array into a string in order to
store that information in a database

m To turn a string into an array to convert
a comma-delimited text field (say a
keyword search area of a form) into its
separate parts

The syntax for using explode() is as follows:

$array = explode(separator, $string);

The separator refers to whatever character(s)
define where one value ends and another
begins. Commonly this is a comma, a tab,
or a blank space. Thus your code might be
$array = explode(',", $string);

or

$array = explode(' ', $string);

To go from an array to a string, you need
to define what the separator (aka the glue)
should be, and PHP does the rest:

$string = implode(glue, $array);
$string = implode(',’, $array);
or

$string = implode(' ', $array);

To demonstrate how to use explode() and
implode(), you’ll create an HTML form that
takes a space-delimited string of names
from the user 0 The PHP script will then
turn the string into an array so that it can
sort the list. Finally, the code will create and
return the alphabetized string @.

Enter the words you want alphabetized with each individual word separated by a space:

Brian Sommar Eric Mark Shauna Allison Mike

P TR EyT——
Alphabetize!

@ This HTML form takes a list of words, which is then alphabetized by the list.php script

Allison
Brian
Eric
Mark
Mike
Shauna
Sommar

An alphabetized version of your list is:

0 Here’s the same list, alphabetized
for the user. This process is quick and
easy to code, but doing so would be
impossible without arrays.

172 Chapter 7

Script 7.6 This is a simple HTML form where a

user can submit a list of words. Including detailed
instructions for how the form should be used is a

prudent Web design policy.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>I Must Sort This Outl</title>
</head>
<body>
<l-- Script 7.6 - list.html -->
10 <div><p>Enter the words you want
alphabetized with each individual word
separated by a space:</p>

O 0N O

11
12 <form action="list.php" method="post">
13

14 <input type="text" name="words"
size="60" />

15 <input type="submit" name="submit"
value="Alphabetize!" />

16

17 </form>

18 </div>

19 </body>

20 </html>

To create the HTML form:

1. Begin a new document in your text
editor or IDE, to be named list.html
(Script 7.6):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmla/
DTD/xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>I Must Sort This Out!
</title>
</head>
<body>
<!-- Script 7.6 - list.html -->

2. Create an HTML form with a text input:

<div><p>Enter the words you
want alphabetized with each
individual woxrd separated by
a space:c/p>

<form action="list.php"
method="post">
<input type="text" name="words

size="60" />

It's important in cases like this to
instruct the user. For example, if the
user enters a comma-delimited list, the
PHP script won'’t be able to handle the
string properly (after completing both
scripts, try using commas in lieu of
spaces and see what happens).

continues on next page

Using Arrays 173

3. Create a submit button, and then close Script 7.7 Because the explode() and implode()

. functions are so simple and powerful, you can
the form and the HTML page: quickly and easily sort a submitted list of words

<input type="submit" name= (of practically any length) in just a couple of lines.
n 2 n =ll : |ll
submit” value="Alphabetizel® /> 1 <IDOCTYPE html PUBLIC "-//W3C//DTD
</form> XHTML 1.0 Transitional//EN"
</div> 2 "http://www.w3.0rg/TR/xhtm11/DTD/
</body> xhtmli-transitional.dtd">
</htmls 3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
4. Save your script as 1list.html and 4 <head>
place it in the proper directory for your 5 <meta http-equiv="Content-Type"
PHP-enabled server. content="text/html;
charset=utf-8"/>
Now you’ll write the 1ist.php page to 6 <title>I Have This Sorted Out</title>
process the data generated by list.html. 7 </head>
8 <body>
9 <?php // Script 7.7 - list.php
To convert between 10 /* This script receives a string in
strings and arrays: $ POST['words']. It then turns it into
. . an array,
1. Begin a new document in your text 11 sorts the array alphabetically, and
editor or IDE, to be named 1list.php reprints it. */
(Script 7.7): 12
" 13 // Address error management, if you
<!DOCTYPE html PUBLIC "-//W3C//DTD want.
XHTML 1.0 Transitional//EN" 14
"http://www.w3.0rg/TR/xhtmla/ 15 // Turn the incoming string into an
DTD/xhtmli-transitional.dtd"> array:
<html xmlns="http://www.w3.org/ [0 renis gy O Geleial
" "om $_POST['words']);
1999/xhtml" xml:lang="en 17
lang="en"> 18 // Sort the array:
<head> 19 sort($words_array);
<meta http-equiv="Content-Type" 20
content="text/html: 21 // Turn the array back into a string:
" ’ 22 $string_words = implode('
',
charset=utf-8"/> $words_array);
<title>I Have This Sorted Out 23
</title> 24 // Print the results:
</head> 25 print "<p>An alphabetized
<body> version of your list is:

5 y . . $string_words</p>";
<?php // Script 7.7 - list.php 2%
2. Turn the incoming string, $_ 27 D
POST['words'], into an array: 28 </body>
’ 29 </html>

$words_array = explode(' ' ,
$_POST['words']);

This line of code creates a new array,
$words_array, out of the string

174 Chapter 7

$_POST['words']. Each space between
the words in $_POST['words'] indicates
that the next word should be a new array
element. Hence the first word becomes
$words_array[0], then there is a space
in $_POST['words'], then the second
word becomes $words_array[1], and so
forth, until the end of $_POST['words'].

3. Sort the array alphabetically:
sort($words_array);

Because you don’t need to maintain key-
value associations in the $words_array,
you can use sort() instead of asort().

4. Create a new string out of the sorted array:

$string_words = implode('
',
$words_array);

Arrays don’t print as easily as strings,

so turn $words_array into a string
called $string_words. The resulting
string starts with the value of $words_
array[o], followed by the HTML

tag, the value of $words_array[1], and
so on. Using <bxr /> instead of a space
or comma gives the list a more readable
format when it’s printed to the browser.

5. Print the new string to the browser:

print "<p>An alphabetized
version of your list is:

$string_words</p>";

6. Close the PHP section and the HTML page:

>
</body>
</html>

7. Save your page as list.php, place itin
the same directory as 1list.html, and
test both scripts in your Web browser

and

You’ll also run across code written using
the join() function, which is synonymous
with implode().

Using Arrays 175

Creating an Array
from a Form

Throughout this chapter, you've
established arrays entirely from within

a PHP page. You can, however, send an
array of data to a PHP script via an HTML
form. In fact, every time you use $_POST,
this is the case. But you can take this one
step further by creating arrays using an
HTML form. Such arrays will then be a
part of the greater $_POST array (thereby
making $_POST a multidimensional array).

A logical use of this capability is in dealing
with checkboxes, where users might need
to select multiple options from a group @.
The HTML source code for a checkbox is
as follows:

<input type="checkbox"
name="topping" value="Ham" />

The problem in this particular case is that
each form element must have a unique
name. If you created several checkboxes,
each with a name of topping, only the
value of the last checked box would be
received in the PHP script. If you were to
create unique names for each checkbox—
ham, tomato, black_olives, etc.—working
with the selected values would be tedious.

The workaround is to use array syntax, as
demonstrated in the next example.

Pizza Toppings: (0 Extra Tomato (] Ham [J Sausage [Pepperoni
O Black Olives [J Turnips [Kumquats

0 Checkboxes in an HTML form, presenting several possible options.

176 Chapter?7

Script 7.8 This HTML form has an array for the
checkbox input names.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">
3 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Add an Event</title>
</head>
<body>
<l-- Script 7.8 - event.html -->
10 «div><p>Use this form to add an
event:</p>

v

O o ~N O

11
12 <form action="event.php" method="post">
13

14 <p>Event Name: <input type="text"
name="name" size="30" /></p>

15 <p>Event Days:

16 <input type="checkbox" name=
"days[]" value="Sunday" /> Sun

17 <input type="checkbox" name=
"days[]" value="Monday" /> Mon

18 <input type="checkbox" name=
"days[]" value="Tuesday" /> Tue

19 <input type="checkbox" name=
"days[]" value="Wednesday" /> Wed

20 <input type="checkbox" name=
"days[]" value="Thursday" /> Thu

21 <input type="checkbox" name=
"days[]" value="Friday" /> Fri

22 <input type="checkbox" name=
"days[]" value="Saturday" /> Sat

23 </p>

24 <input type="submit" name="submit"
value="Add the Event!" />

25

26 </form»

27 </div>

28 </body>

29 </html>

To create an array with
an HTML form:

1.

Begin a new document in your text
editor or IDE, to be named event.html
(Script 7.8):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmla/
DTD/xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en"
lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Add an Event</title>
</head>
<body>
<!-- Script 7.8 - event.html -->
<div><p>Use this form to add an
event:</p>

Begin the HTML form:
<form action="event.php"
method="post">

This form will be submitted to event.php,

found in the same directory as this HTML

page.

Create a text input for an event name:

<p>Event Name: <input type="text"
name="name" size="30" /></p>

This example allows the user to enter
an event name and the days of the
week when it takes place.

continues on next page

Using Arrays 177

4. Create the days checkboxes:

<p>Event Days:
<input type="checkbox" name=
"days[]" value="Sunday" /> Sun
<input type="checkbox" name=
"days[]" value="Monday" /> Mon
<input type="checkbox" name=
"days[]" value="Tuesday" /> Tue
<input type="checkbox" name=
"days[]" value="Wednesday" /> Wed
<input type="checkbox" name=
"days[]" value="Thursday" /> Thu
<input type="checkbox" name=
"days[]" value="Friday" /> Fri
<input type="checkbox" name=
"days[]" value="Saturday" /> Sat
</p>

All of these checkboxes use days[]
as the name value, which creates a
$_POST['days'] array in the PHP script.
The value attributes differ for each
checkbox, corresponding to the day of
the week.

5. Complete the HTML form:

<input type="submit" name=
"submit" value="Add the
Event!" />
</form>

6. Complete the HTML page:

</div>
</body>
</html>

7. Save your page as event.html and
place it in the proper directory for your
PHP-enabled server.

You also need to write the event.php page
to handle this HTML form.

178 Chapter 7

Script 7.9 This PHP script receives an array of
values in $_POST['days'].

1 <IDOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
2 "http://www.w3.0rg/TR/xhtml1/DTD/
xhtmli-transitional.dtd">

3 <html xmlns="http://www.w3.0rg/1999/

xhtml" xml:lang="en" lang="en">

<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>

6 <title>Add an Event</title>

7 </head>

8 <body>

9 <php // Script 7.9 - event.php

10 /* This script handle the event form. */

v

12 // Address error management, if you
want.

14 // Print the text:

15 print "<p>You want to add an event
called {$ POST['name']} which
takes place on:
";

16

17 // Print each weekday:

18 if (isset($_POST['days']) AND
is_array($_POST['days'])) {

19

20 foreach ($ _POST['days'] as $day) {

21 print "$day
\n";

22 }

23

24} else {

25 print 'Please select at least one
weekday for this event!’;

26}

27

28 // Complete the paragraph:
29 print </p>';

30
31 </body>
32 </html>

To handle the HTML form:

1. Begin a new document in your text
editor or IDE, to be named event.php
(Script 7.9):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmla/
DTD/xhtmli-transitional.dtd">
<html xmlns="http://www.w3.org
/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type"
content="text/html;
charset=utf-8"/>
<title>Add an Event</title>
</head>
<body>

2. Create the initial PHP tag, address error
management (if need be), and print an
introductory message:

<?php // Script 7.9 - event.php

print "<p>You want to add an event
called {$_POST['name']}
which takes place on:
";

The print line prints out the value

of the event’s name. In a real-world
version of this script, you would add

a conditional to check that a name
value was entered first (see Chapter 6,
“Control Structures”).

3. Begin a conditional to check that at
least one weekday was selected:

if (isset($_POST['days']) AND
is_array($_POST['days'])) {

If no checkbox was clicked, then
$_POST['days'] won't be an existing
variable. To avoid an error caused by
referring to a variable that does not
exist, the first part of the conditional
checks that $_POST['days'] is set.

continues on next page

Using Arrays 179

The second part of the condition—
and both must be TRUE for the entire
condition to be TRUE—confirms that

$ POST['days'] is an array. This is a
good step to take because a foreach
loop will create an error if it receives a
variable that isn’'t an array @.

. Print each selected weekday:

foreach ($_POST['days'] as $day) {
print "$day
\n";
}

To print out each checked weekday,
run the $_POST['days'] array through

a foreach loop. The array contains the
values (from the HTML form inputs, for
example, Monday, Tuesday, and so on)
for every box that was selected.

. Complete the is_array() conditional:

} else {
print 'Please select at least
one weekday for this event!’;

}

If no weekday was selected, then the
isset() AND is_array() condition is
FALSE, and this message is printed.

The List Function

The 1ist() function is used to assign
array element values to individual
variables. To start with an example:

$date = array('Thursday', 23,
'October');

list($weekday, $day, $month) =
$date;

Now there is a $weekday variable with a
value of Thursday, a $day variable with
a value of 23, and a $month variable
with a value of October.

There are two caveats for using 1ist().
First, 1ist() only works on arrays
numerically indexed starting at O.
Second, when you're using the 1ist()
function, you must acknowledge each
array element. You could not do this:

list($weekday, $month) = $date;

But you can use empty values to ignore
elements:

list ($weekday, , $month) = $date;
or
list (, , $month) = $date;

The 1ist() function is often used when
retrieving values from a database.

Warning: Invalid argument supplied for foreach() in /Users
Narryullman/Sites/phpvgsd/event.php on line 16

0 Attempting to use foreach on a variable that is not an array is a

common cause of errors.

180 Chapter7

6. Complete the main paragraph, the PHP
section, and the HTML page:
print '</p>';
>
</body>
</html>

7. Save the page as event.php, place itin
the same directory as event.html, and
test both pages in your Web browser

0.0, :nd 0.

The same technique demonstrated here
can be used to allow a user to select multiple
options in a drop-down menu. Just give the
menu a name with a syntax like somethingl[],
then the PHP script will receive every selection
in $_POST['something'].

Use this form to add an event:

Event Name: Training Seminar
Event Days: (J Sun [Mon ™ Tue ® Wed & Thu O Fri (O Sat

G The HTML form with its checkboxes.

You want to add an event called Training Seminar which takes
place on:

Tuesday

Wednesday

Thursday

© The results of the HTML form.

You want to add an event called Training Seminar which takes
place on:
Please select at least one weekday for this event!

G If users don’t check any of the day boxes, they’ll see this message.

Using Arrays 181

Review and Pursue

If you have any problems with the review
questions or the pursue prompts, turn

to the book’s supporting forum (www.
LarryUllman.com/forum/).

Review

m What'’s the difference between an
indexed array and an associative
array?

m When should you use quotation marks
for an array’s key or value? When
shouldn’t you?

= How do you print a specific array
element? How do you print every
element in an array?

m What happens if you don’t use the
square brackets when adding an
element to an array?

m What function returns the number of
elements in an array?

m When must you use curly brackets for
printing array elements?

m What is the difference between
the sort() and asort() functions?
Between sort() and rsort()?

= What is the syntax for explode()? For
implode()? If you don’t remember,
check out the PHP manual page for
either function.

Pursue

m Check out the PHP manual’s pages
for the array-related functions. Look
into some of the other available array
functions. In particular I'd recommend
familiarizing yourself with array_
key_exists(), array_search(), and
in_array().

m Rewrite soups2.php so that it displays
the number of elements in the array
without using a separate variable. Hint:
You’ll need to concatenate the count()
function call into the print statement.

m Create another script that creates and
displays a multidimensional array (or
some of it, anyway).

m Rewrite list.php so that it uses
foreach instead of implode(), but still
prints each sorted word on its own
line in the browser. Also add some
form validation so that it only attempts
to parse and sort the string if it has a
value.

182 Chapter7

www.LarryUllman.com/forum/
www.LarryUllman.com/forum/

Creating Web
Applications

The book to this point has covered the
fundamentals of programming with PHP;
now it’s time to begin tying it all together
into actual Web applications. In this chap-
ter, you'll learn a number of functions and
techniques for making your Web sites more
professional, more feature-rich, and easier
to maintain.

First, you'll learn how to use external files

to break Web pages into individual pieces,
allowing you to separate the logic from the
presentation. Then you’ll tinker with con-
stants, a special data type in PHP. After that,
you'll be introduced to some of the date-
and time-related functions built into PHP.

Two of the chapter’s topics discuss useful
techniques: having the same page both
display and handle an HTML form, and
having a form remember user-submitted
values. After that, you'll see how easy

it can be to send email from PHP. The
chapter concludes with the slightly more
advanced topics of output buffering and
HTTP headers.

In This Chapter

Creating Templates

Using External Files

Using Constants

Working with the Date and Time

Handling HTML Forms with PHP,
Revisited

Making Forms Sticky
Sending Email

Output Buffering
Manipulating HTTP Headers

Review and Pursue

184
192
197
201

204
210
217

222

225

230

Creating Templates

Every example thus far has been a one-
page script that handles an HTML form,
sorts arrays, performs calculations,

and so on. As you begin to develop
multiple-page Web sites (which is to say,
Web applications), it quickly becomes
impractical to repeat common elements
on multiple pages.

On more sophisticated Web sites, many
features, such as the HTML design, will

be used by every, or almost every, page
within the site. You can put these elements
into each individual page, but when you
need to make a change, you’ll be required
to make that change over and over again.
You can save time by creating templates
that separate out the repeating content
from the page-specific materials. For
example, a Web site may have navigation,
copyright, and other features that repeat
across multiple pages @ and ©.

When you first start doing dynamic Web
development, creating and using templates
can be daunting. The key is to start with

a basic prototype, as if you were creating

a static Web page, and then divide that
prototype into reusable parts. Using the
PHP functions introduced in the next
section of this chapter, the repeating parts
can be easily included in each page while
the new content is generated on a page-
by-page basis. To create the template in
use by this chapter’s examples, let’s start
with the prototype. This example’s layout @
was created by James Koster of Six Shooter
Media (www.sixshootermedia.com), and
used with his kind permission.

b e b T it | ¢

PHP for the Web: Visual QuickStart Gulde (3rd Edition)

trare aderon

About T Insights. Inc

Buy This Book
m—

Subscribe to Lasry's New
Downioads e 2 b

0 The home page for the third edition of this
book has its page-specific content in the left
column and common elements in the right.

[T e e

Abeot DNE Inwights, Ine

Bu.\' This Book
B
PHP

0 The table of contents page uses some of the
same common elements as the home page
thanks to the templates.

i 1t et 1. st e M LiEl

Raise High the Roof Beam! e

Welcome toa J.D. Salinger Fan

Another Header

G The design for this chapter’s examples, as a
single, static HTML page.

184 Chapter 8

www.sixshootermedia.com

Script 8.1 This script represents the basic look
each page in the site should have.

1

13

14
15

16
17
18
19
21
22

23

25

26

27
28

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML

1.1//EN" "http://www.w3.0rg/TR/xhtml11/

DTD/xhtml11.dtd">

<html xmlns="http://www.w3.0rg/1999/

xhtml" xml:lang="en">

<head>
<title>Raise High the Roof Beam!
A 3.D. Salinger Fan Club</title>
<meta http-equiv="content-type"
content="text/html; charset=utf-8" />
<link rel="stylesheet"
href="css/1.css" type="text/css"
media="screen,projection" />

</head>

<body>

<div id="wrapper">

<div id="header">
<p class="description">A J.D.
Salinger Fan Club</p>
<h1>Raise High
the Roof Beam!</h1>
<ul id="nav">

Books</11>
Stories</1i>
<livQuotes</a»</1i>

Login</1i>

Register</1i>

</div><!-- header -->

<div id="sidebar">
<h2>Favorite Quotes</h2>

<p class="news">I don't exactly
know what I mean by that, but
I mean it.
- The
Catcher in the Rye</p>
<p class="news">I privately say
to you, old friend... please
accept from me this unpretentious
bouquet of early-blooming
parentheses: (((()))).
-
Raise High the Roof Beam,
Carpenters and Seymour: An
Introduction</p>

</div><!-- sidebar --»

code continues on next page

To create the layout model:

1. Begin a new HTML document in

your text editor or IDE, to be named
template.html (Script 8.1):

<!DOCTYPE html PUBLIC "-//W3C//DTD
XHTML 1.1//EN" "http://www.
w3.0rg/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/
1999/xhtml" xml:lang="en">
<head>
<title>Raise High the Roof
Beam! A J.D. Salinger Fan
Club</title>
<meta http-equiv="content-type"
content="text/html;
charset=utf-8" />

The first step in developing any
template system is to create a model
document—an example of what a basic
page should look like. Once you’ve
created this, you can break it down
into its parts.

. Add the CSS code:

<link rel="stylesheet"
href="css/1.css" type="text/css"
media="screen,projection" />

This example uses CSS for most of the
formatting and layout controls. The CSS
itself is stored in an external file that
becomes part of this page through the
link tag. The file itself is named simply
1.css, and is to be stored in a folder
named css.

Note that you’ll need to download the
CSS file from the book’s corresponding
Web site (www.LarryUllman.com).

You'll find it as part of the book’s
downloadable code.

continues on next page

Creating Web Applications 185

www.LarryUllman.com

3. Close the HTML head, begin the body, Script 8.1 continued

and create a wrapper div tag:

29 <div id="content">
</head> 30 <!-- BEGIN CHANGEABLE CONTENT. -->
<body> 31 <h2>Welcome to a J.D. Salinger Fan
s s " Club</h2>
<div id="wrapper”> 32 <p>Lorem ipsum dolor sit amet,
Many of today’s designs wrap the entire consectetur adipisicing elit, sed
page content within a primary div, so do eiusmod tempor incididunt ut

labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud
exercitation ullamco laboris

that all of the content can easily be
formatted within the browser window.

4. Create the page’s header: nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor
<div id="header"> in reprehenderit in voluptate
<p class="description">A J.D. velit esse cillum dolore eu fugiat
Salinger Fan Club</p> nulla pariatur. Excepteur sint

occaecat cupidatat non proident,
sunt in culpa qui officia deserunt
mollit anim id est laborum.</p>

<hi>Raise
High the Roof Beam!</h1>

<ul id="nav"> 33 <h2>Another Header</h2>
 34 <p>Lorem ipsum dolor sit amet,
Books</1i> consectetur adipisicing elit, sed

do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud

Stories</1li>
Quotes</1i>

 exercitation ullamco laboris
Login</1i> nisi ut aliquip ex ea commodo
 consequat. Duis aute irure dolor

in reprehenderit in voluptate

Register</11> velit esse cillum dolore eu fugiat
 nulla pariatur. Excepteur sint
</div><!-- header --> occaecat cupidatat non proident,
The header area (also defined in the CSS sunt in lelp? qui officia deserunt
_ mollit anim id est laborum.</p>
code) creates the banner and the primary 35 <l-- END CHANGEABLE CONTENT. -->
navigation links to the other pages in 36 </div><l-- content --»
the Web application. The specific links 37
reference four PHP scripts, all of which :g <div i$="f‘i°fcer: -
. . <p>Template design by <a
will be developed in this chapter. href="http://www.sixshootermedia.
com">
Six Shooter Media.</p>
40 <p>© 2011</p>
41 </div><!-- footer -->
42
43 </div><!-- wrapper --»
44 </body>
45 </html>

186 Chapter 8

5. Create the page’s sidebar:

<div id="sidebar">
<h2>Favorite Quotes</h2>
<p class="news">I don't
exactly know what I mean
by that, but I mean it.

- The Catcher in
the Rye</p>
<p class="news">I privately
say to you, old friend...
please accept from me this
unpretentious bouquet of
early-blooming parentheses:
(((0O))).<bxr />- Raise
High the Roof Beam,
Carpenters and Seymour:
An Introduction</p>
</div><!-- sidebar -->

In the original template, the sidebar
can be used for latest news, secondary
links, a search box, and so forth. In

this site’s template, a couple of quotes
are highlighted.

. Begin, and mark, the start of the page-
specific content:

<div id="content">
<!-- BEGIN CHANGEABLE CONTENT. -->

Everything up until this comment will
remain the same for every page in the
Web application. To indicate where the
page-specific content begins (for your
own benefit), include an HTML comment.
In fact, looking back at the template so
far, you'll see a number of HTML com-
ments, helping to indicate what each
piece of the page is for. You cannot over-
comment your HTML or PHP codel!

Just before that, the content area is begun.
This area is defined in the CSS code and

7.

Create the page’s content:

<h2>Welcome to a J.D. Salinger
Fan Club</h2>

<p>Lorem ipsum dolor sit
amet...</p>

For the prototype, the content is just a
couple of headers and a whole lot of
text (there’s more in the actual script
than I've included in this step).

Mark the end of the changeable content:

<!-- END CHANGEABLE CONTENT. -->
</div><!-- content -->

The code in Step 7 is the only text that
will change on a page-by-page basis.
Just as an HTML comment indicates
where that section starts, one here
indicates where it ends.

Add the footer:

<div id="footer">
<p>Template design by <a href=
"http://www.sixshootermedia.
com">Six Shooter Media.</p>
<p>© 2011</p>
</div><!-- footer -->

The footer includes a credit and an
indication of copyright.

10. Finish the HTML page:

1.

</div><!-- wrapper -->
</body>
</html>

To make the template easier to modify
and maintain, you’ll notice that HTML
comments indicate which divs are
being closed.

Save the file as template.html and test
it in your Web browser

Once you’ve completed a prototype that
you like, you can break it into its various
parts to generate the template system.

properly formats the main content part of
the page. In other words, on every page,
that page’s content will go within the one
div that has an id of content.

Creating Web Applications 187

To create the header file:

1. Open template.html (Script 81) in your

2.

text editor or IDE, if it isn’t already open.

Select everything from the initial HTML
code to the <!-- BEGIN CHANGEABLE
CONTENT --> HTML comment @.

Part of the benefit of identifying the
start of the page-specific content with
an HTML comment is that it simplifies
breaking the model into its parts.

0o &] template.html —
£ G “ Last Saved: 12/13/10 10:21:30 AM ==
< ._/’ |TF|‘ @ & File Path v : --/Downloads /typography_paramount/template.html |:u

4 | » <[template.html 3| (no symbol selected) * . # -

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" 'h‘ltp:f!mu.wB.orngR!xh‘lmlllfDT-
¥ <hlml amlns="hLLp: 7 A, S, orgf 1999 ahlnl" aml: lang="cn">
¥ chead:
<title>Raise High the Roof Beam! A 1.D. Salinger Fan Club</title>
<meta http-equiv="content-type" content="text /himl; charset=utf-a8" />
<link rel="stylesheet" hret="cssfl.css"” type="text/css~ media="screen,projecti

= <fhead>
¥ <body>
¥ <div id="wrapper":>
¥ <div id="header">
<p class="description”>& J.D. Salinger Fan Club</p>
<hl>Raise High the Roof Beam!<fa></hl>
A <ul id="nav">
<li»Books<fa>< /11>
<liz<a "sStories<faz<flis
<liz<a ">Quotes<faz</1iz
<liz<a ogin.php">Login<fa></1li>
<li»Register</az</1i>
- <ful>
- <fdiwrcl-- header --3%
o <div id="sidebar">
<h2>Favorite Quotes</h2>
Zp €lass—"news">I don't emactly know what I mean by that, but I mean i
<p class="news">T privately say to you, old friend... please accept fr
- <fdivo<!-- sidebar -->
hd <div id-"content">
«l-- BEGIN CHAMGEAELE CONTENT. -->
<h2>Welcome to a J.D. Salinger Fan Club</h2>
<p:Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmo
<h2zAnother Header<sh2:
<p:Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmo
<l-- END CHANGEAELE COMTENT. --»
- <fdive<!-- content --»
o <div id="footer">
<prTemplate design by 5ix Shooter
<px© 20811</p>
- <fdivo<!l-- footer --»
~ <fdiv><l-- wrapper -->
= </body>
= <fhtml>
(&) IS
14|l HTML = | Unicode (UTF-8) = Unix(LF) ~| |7 2,530/ 387 /45

0 Using the prototype file, select and copy the initial lines of code to create
the header.

188 Chapter 8

Script 8.2 This is a basic header file that creates 3. Copy this code.
the HTML head information, includes the CSS file,
and begins the body. Using your Edit menu or keyboard shortcut

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML (Ctri+C on Windows, Command+C on the
L.1//EN" "http://www.u3.01g/TR/xhtnl11/ Macintosh), copy all of the highlighted
DTD/xhtml11.dtd"s code to your computer’s temporary

2 <html xmlns="http://www.w3.0rg/1999/ memory (the clipboard).
xhtml" xml:lang="en">

3 <head> 4. Create a new, blank document in

4 <titée>§aitse High thglkgo/f Belam! your text editor or IDE, to be named

A 1.D. Salinger Fan Club</title>
5 <meta http-egquiv="content-type" header.html.
; Ci')tﬁn’ﬁ'itﬁxg/{ﬂmhl; Sjarse’ﬁutf-g" > 5. Paste the copied text into the document
<link rel="styleshee ;
href="css/1.css" type="text/css" (Script 8.2).
media="screen,projection” /> Using your Edit menu or keyboard

g %23?/(:) shortcut (Ctrl+V on Windows,

9 <div id="wrapper"> Command+V on the Macintosh),

10 paste all of the highlighted code

1 «div id-"header’s into this new document.

12 <p class="description">A J.D.

Salinger Fan Club</p> 6. Save the file as header.html.
13 <h1>Raise High
the Roof Beam!</h1> Now that the header file has been created,
14 <ul iq="naV"> . . you’'ll make the footer file using the same
15 <lix<a href: books.php">Books process.
</1i>

16 Stories</1i>

17 Quotes</1i>

18 Login

</ar</1i>
19
Register</1i>

20

21 </div><!-- header -->

22

23 <div id="sidebar"»

24 <h2>Favorite Quotes</h2>

25 <p class="news">I don't exactly

know what I mean by that,
but I mean it.
- The
Catcher in the Rye</p>

26 <p class="news">I privately say to

you, old friend... please accept
from me this unpretentious
bouquet of early-blooming
parentheses: (((()))).
-
Raise High the Roof Beam,
Carpenters and Seymour: An
Introduction</p>

27 </div><!-- sidebar -->

28

29 <div id="content">

30 <!-- BEGIN CHANGEABLE CONTENT. -->

31 <l-- Script 8.2 - header.html -->

Creating Web Applications 189

To create the footer file:

1. Open layout.html (Script 8.1) in your
text editor or IDE, if it isn’t already open.

2. Select everything from the <!-- END
CHANGEABLE CONTENT --> HTML
comment to the end of the script @.

3. Copy this code.

4. Create a new, blank document in your
text editor, to be named footer.html.

5. Paste the copied text into the document
(Script 8.3).

Script 8.3 This is a basic footer file that concludes
the HTML page.

1 <l-- Script 8.3 - footer.html -->

2 <!-- END CHANGEABLE CONTENT. -->

3 </div><!-- content -->

4

5 <div id="footer">

6 <p>Template design by <a
href="http://www.sixshootermedia.
com">Six Shooter Media.</p>

7 <p>8copy; 2011</p>

8 </div><!-- footer -->

9

10 </div><!-- wrapper -->

11 </body>
6. Save the file as footer.html. 12 </html>
0o |w) template.html Y
4 TRl . L Last Saved: 12/13/10 10:21:30 AM ==
s ,_/’ IT—I" @ u File Path = : ~/Dh ds ftypography_par fremplate_html .:U
< | » o[template.ntml 3| (no symbol selected) * . #.
|

v cdiv id="contcnt">

<l-- BEGIN CHAWGEAELE CONTENT. -->
<h2>Welcome to a J.D0. Salinger Fan Club</h2:
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eius
<hZsAnulher HeaderhZs
<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eius
«l-- END CHANGEABLE CONTENT. -->

- <fdiv><!-- content --»

A <div id="footer">
<p>Template design by 5ix Shoot
<p>© 2011<fp>

- <foiv><l-- tooter -->

r

<fdivz<l-- wrapper -->
= ofbody>
= cfhtml>

e <>
35(1 HTML 5 | Unicode (UTF-8) 5 Unix(LF) > |1 2,530/ 387 /45

G Again using the prototype file, select and copy the concluding lines of code
for the footer.

190 Chapter 8

eno Table Example There are many far more complex
template systems you can use in PHP to
separate the design from the logic. The

Top decorative row.

Header file ends here. best known of these is probably Smarty
(www.smarty.net).
Navigation Page-specific content goes Clank
column. here. space.

Although this example uses CSS for its
layout, you can certainly use tables instead O
Your header file might begin the HTML page
| Copyright row. . and the table. Each content page would then
create its own specific content, and the footer
o This mundane example shows how a table can file would complete the table and the HTML

- ! 5 page. To turn such a design into a template,
be used with template files to create a design. .

copy all of the code up to Page-specific

content goes here. into a header file and
everything after that into a footer file.

Foater file starts here

CSS Templates

Cascading Style Sheets (CSS) have been an increasingly important part of the World Wide Web
for some time. Their initial usage was focused on cosmetics (font sizes, colors, and so on), but
now CSS is frequently used in lieu of tables to control the layout of pages. The Web application
in this chapter uses this approach.

This example defines four areas of the page—header, sidebar, content, and footer. The content
area will change for each page. The other areas contain standard items, such as navigation links,
that appear on each page of the site.

Just to be clear: The relationship between PHP and CSS is the same as that between PHP and

HTML—PHP runs on the server and HTML and CSS are significant to the browser. As with HTML,
you can use PHP to generate CSS, but in this example, the CSS is hard-coded into a separate file.

Creating Web Applications 191

www.smarty.net

Using External Files

As the preceding section stated, you

can save development time by creating
separate pages for particular elements and
then incorporating them into the main PHP
pages using specific functions. Two of these
functions are include() and require():

include ('file.php');

require ('file.html');

Both functions work the same way, with
one relatively insignificant difference: If an
include() function fails, the PHP script
generates a warning O but continues

to run. Conversely, if require() fails, it
terminates the execution of the script @.

But what do these two functions do? Both
include() and require() incorporate
the referenced file into the main file

(for clarity’s sake, the file that has the
include() or require() line is the
including or parent file). The result is the
same as if the included code were part of
the parent file in the first place.

Understanding that basic idea—including

a file makes it as if that file’s contents were
in the parent script to begin with—is key to
making the most out of this feature. This
means that any code within the included file
not within PHP tags is treated as HTML. And
this is true regardless of what extension the
included file has (because it’s the extension
of the including file that counts).

There are many reasons to use included files.

You could put your own defined functions
into a common file (see Chapter 10, “Creating
Functions,” for information on writing your
own functions). You might also want to place
your database access information into a
configuration file. First, however, let’s include
the template files created in the preceding
section of the chapter in order to make
pages abide by a consistent design.

o™ B(=JES

' Warning, wclude({lemplatesheader i) [Lunchon mclude |, Laled Lo
| open stream: e such file or directery in /Usersdarryullman/Sites
fphpvgsdiindex php on bine 6

| Warning: inchide) [funcnen include]: Failed spening

K platesheader btml' for inclusion (include_path=" /Applications

| DLARP b, bk m UserslarmyullmanSites/phpvysd
findex.php on line 6

| Welcome to a J.D. Salinger Fan Club

| Lorem spsum dolor sit amet, consectetur adipusicing elit, sed do emsmod
' tempor incididunt ut labore et dolore mapna aliqua. Tt endm ad minim
| vendam, quis nostrud exercitation llameo laberis nisi ut aliquip cx ca

| commods consedquat. Dhas aute wure dolor mn reprehendent in woluptate

OWhen an include() fails, warnings are issued,
but the script continues to execute.

(R BEG
' Warning, reguue(lemplatesieader o) [Cocion regue], Galed 1o open
| stream Mo such file or directory in MUsersilarryullmanSites/phpvgsd
Sindex.php on line &

| Fatal error: require() [function require]: Falled epening required
| ‘templatesheader bt (mnchide_path=" /4 pplcations/BLAMPlbwiphps. 3
! Aibfphp) in Mserslarryullman/Sites/phpvgsd/index.php on line 6

0 When a require() function call fails, warnings
and errors are issued, and the script stops running.

192 Chapter 8

Script 8.4 Once the two included files have been
created, the include() function incorporates them
into the parent file to create the complete HTML

To use external files:

1. Create a new document in your text

page on the fly.

1 <?php // Script 8.4 - index.php
2 /* This is the home page for this site.
3 It uses templates to create the

layout. */

4

5 // Include the header:

6 include('templates/header.html');

7 // Leave the PHP section to display lots
of HTML:

8 >

9

h2>

11 <p>Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea

cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.</p>
12 <h2>Another Header</h2>
13 <p>Lorem ipsum dolor sit amet,
consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea

cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia
deserunt mollit anim id est laborum.</p>

14

15 <?php // Return to PHP

16 include('templates/footer.html');
/! Include the footer.

17

10 <h2>Welcome to a J.D. Salinger Fan Club</

commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse

commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse

editor or IDE, to be named index.php.

. Start with the initial PHP tags and add

any comments (Script 8.4):

<?php // Script 8.4 - index.php

/* This is the home page for
this site.

It uses templates to create the
layout. */

Notice that, with the template system,
the very first line of the script is the PHP
tag. There’s no need to begin with the
initial HTML, because that is now stored
in the header.html file.

. Address error management, if necessary.

This topic is discussed in Chapter 3,
“HTML Forms and PHP,” and may or
may not need to be addressed in your
scripts. See that chapter for more;
this will be the last time | specifically
mention it in this chapter.

. Include the header file:

include('templates/header.html');

To use the template system, you
include the header file here by invoking
the include() function. Because the
header file contains only HTML, all of
its contents will be immediately sent to
the Web browser as if they were part of
this file. This line uses a relative path to
refer to the included file (see the “File
Navigation and Site Structure” sidebar)
and assumes that the file is stored in
the templates directory.

continues on next page

Creating Web Applications 193

. Close the PHP section and create the

page-specific content:

7>

<h2>Welcome to a J.D. Salinger
Fan Club</h2>

<p>Lorem ipsum doloxr sit
amet...</p>

Because the bulk of this page is
standard HTML, it’s easier to just exit
out of the PHP section and then add the
HTML (rather than using print to send
it to the Web browser). Again, there’s
more blather in the actual script than
I’'ve included here.

. Create another PHP section and require
the footer file:

<?php
include('templates/footer.html");
7>

To finish the page, you need to include
the footer file (which displays the footer
and closes the HTML code). To do this,
you create a new section of PHP—you
can have multiple sections of PHP code
within a script—and call the include()
function again.

. Save the file as index.php.

8. Create a folder called templates within

the main Web document directory on your
PHP-enabled computer or Web server.

To further separate the design elements
from the main content, the header and
footer files go within their own directory.

. Place header.html and footer.html

in the templates directory you just
created.

File Navigation and Site Structure

To be able to use external files, you
need to understand file navigation on
your computer or server. Just as you
must correctly refer to other pages in
HTML links or images in Web sites, you
must properly point a parent file to the
included scripts. You can do this by
using absolute or relative paths. An
absolute path is a complete, specific
address, like the following:

include('C:\inetpub\wwwfiles\
file.php');

include('/Users/larry/Sites/
file.php');

As long as the included file isn’t moved,
an absolute path will always work.

A relative path indicates where the
included file is in relation to the parent
file. These examples assume both are
within the same directory:

include('file.php');
include('./file.php');

The included file can also be in a
directory below the parent one, as in this
chapter’s example (also see (9)):

include('templates/header.html');

Or, the included file could be in the
directory above the parent:

include('../file.php");

Finally, a note on site structure: Once
you divvy up your Web application

into multiple pieces, you should begin
thinking about arranging the files in
appropriate folders. Complex sites might
have the main folder, another for images,
one for administration files, and a special
directory for templates and included
files. As long as you properly reference
the files in your include() or require()
statements, structuring your applications
will work fine and give the added benefit
of making them easier to maintain.

194 Chapter 8

[}
== | e index.php

U = -=1 -

—_— : _ - e header.html

SF

Web root

templates 1

. e footer.html

_U, g —— - é 1.css

css

|
|
|
|
|
|
L

o How the four files and two folders should be
organized on your PHP-enabled server.

13.

1.

12.

10. Place index.php in the same directory

as the templates folder.

The relative locations on the computer
between the index page and the two
HTML pages must be correct in order
for the code to work.

Create a folder called css within the
main Web document directory on your
PHP-enabled computer or Web server.

The CSS script will need to go in this
directory.

Place the 1.css script, available as part
of the book’s downloadable code, in
the css directory @.

Even though the header file includes
the CSS script, the reference to that
script must be relative to index.php.
It's that page, after all, that will include
header.html.

Run index.php in your Web browser @.

The resulting page should look exactly
like the original layout (@ in the
previous section of the chapter).

continues on next page

Raise High the Roof Beam!

Bocks Storfes Quotes Login Reglster

Welcome to a J.1D. Salinger Fan Club

Another Header

Favorite Quores

| 'y wnvly ke what [manm by that, bun |

.
= Kaiew High the Rool Beam. Carperters el
Sepmmour. dn btrocetin

0 This page has been dynamically generated using included files.

Creating Web Applications 195

14.View the page’s source code in your
Web browser.

The source code should be exactly like
the source code of the template.html
script (Script 8.1), aside from the added
comments for the script names and
numbers.

All three files in this template system—
header.html, footer.html, and index.
php—must use the same encoding in order
to avoid problems (see Chapter 1, “Getting
Started with PHP,” for more on encoding).
Each file’s encoding must also match the
encoding established in the HTML code.

The require() and include() func-
tions can be used with or without parentheses:

require 'filename.html';

You might sometimes use a variable that
stores the name of the file to be included:

require $filename;

Both include() and require() have
variations: include_once() and require_
once(). Each is identical to its counterpart
except that it ensures that the same file can be
included only one time (in a parent script). You
should generally avoid using these, as they’ll
adversely affect the script’s performance.

If a section of PHP only executes a single
command, it’'s common to place both it and
the PHP tags on a single line:

<?php include 'filename.html'; ?>

If you see error messages like those

in and (), the parent script can’t locate

an included file. This problem is most likely
caused by a misspelled included filename or
an error in the path (for example, using header.
html instead of templates/header.html).

@D If the rendered Web page does not seem
to be reflecting the CSS styling, the HTML
page can’t find the corresponding file. Make
sure you’ve stored the file in the proper folder,
with the correct name, and that the reference
is correct relative to index.php.

A file’s extension is less important for
included files because they aren’t intended

to be run directly. As a general rule of thumb,
you’ll be safe using .html for an included file
containing only or mostly HTML (in which case
the extension indicates it’s an HTML-related
file) and .php for included files containing only
or mostly PHP. Some programmers use an
.inc extension (for include), but security risks
can arise with this practice. For that reason,
use the .php extension for any file containing
sensitive information (like database access
parameters). And, of course, always use the
.php extension for any PHP script that will be
executed directly.

@D Another good use of an external file is

to place your error settings code there so that
those changes are applied to every page in the
Web site.

196 Chapter 8

Using Constants

Many of PHP’s data types have already
been discussed in this book: primarily
numbers, strings, and arrays. Constants
are another data type, but unlike variables,
their values cannot change.

Whereas variables are assigned values
via the assignment operator (=), constants
are assigned values using the define()
function:

define('CONSTANT_NAME', value);

Notice that—as a rule of thumb—constants
are named using all capital letters, although
doing so isn’t required. Most important,
constants don’t use the initial dollar sign

as variables do (because constants are not
variables). Here are two constants:

define ('PI', 3.14);
define ('CURRENCY', 'euros');

As with any value, quote those that are
strings, not those that are numbers.

Referring to constants is generally
straightforward:

print CURRENCY;
number_format(PI, 1);

But using constants within quotation
marks is more complicated. You can’t print

constants within single or double quotation
marks, like this @:

print "The cost is 468 CURRENCY";
print 'The cost is 468 CURRENCY';

Instead, concatenation or multiple print
statements are required:

print 'The cost is 468 ' . CURRENCY;
or

print 'The cost is 468 ';
print CURRENCY;

Along with the define() function for
creating constants is the defined()
function, which returns TRUE if the
submitted constant has been defined. It's
often used as the basis for a conditional:

if (defined('CONSTANT NAME')) { ..

As an example of working with constants,
you’ll give the sample application the
ability to display a different title (which
appears at the top of the browser window)
for each page. To accomplish this, you’ll
define a constant in the parent script that
will then be printed by the header file. This
technique works because any variables or
constants that exist in the parent document
before the include() or require() call are
available to the included file (it’s as if the
included file were part of the parent file).

The cost is 468 CURRENCY OThe value of a constant cannot be printed using
the constant’s name within quotation marks.

Creating Web Applications 197

To use constants:

1.

Create a new PHP document in
your text editor or IDE, to be named
books.php (Script 8.5):

<?php // Script 8.5 - books.php

. Define the page title as a constant:

define ('TITLE', 'Books by 1J.D.
Salinger');

Here one constant is defined, named

TITLE, and given the value Books by

J.D. Salinger.

Include the header file:
include('templates/header.html');

This script uses the same header file
as all the others, although you’ll modify
that file shortly to take the constant
into account.

. Close the PHP section and create

the HTML:

7>
<h2>].D. Salinger's Books</h2>

The Catcher in the Rye
Nine Stories
Franny and Zooey
Raise High the Roof Beam,
Carpenters and Seymour: An
Introduction</1i>

The content here is simple but serves
the page’s purpose nicely.

. Create a new PHP section that includes

the footer file:
<?php include('templates/
footer.html'); 2>

As mentioned earlier in a tip, since the
remaining PHP code consists of just

Script 8.5 This script uses the same template
system as index.php (Script 8.4) but also uses
a constant to identify the page's title.

1 <php // Script 8.5 - books.php
2 /* This page lists J.D. Salinger's
bibliography. */

/1 Set the page title and include the

header file:

5 define ('TITLE', 'Books by J.D.
Salinger');

6 include('templates/header.html');

8 // Leave the PHP section to display lots
of HTML:

9

10

11 <h2>].D. Salinger's Books</h2>

12 <l>

13 The Catcher in the Rye

14 Nine Stories</1i>

15 Franny and Zooey

16 Raise High the Roof Beam,
Carpenters and Seymour: An
Introduction</1i>

17

18

19 <?php include('templates/footer.html');
2>

198 Chapter 8

Script 8.6 The header.html file is modified so
that it can set the page title value based on the
existence and value of a constant.

one line it can all be written on a single
line, including the opening and closing

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.1//EN" "http://www.w3.0rg/TR/xhtml11/
DTD/xhtml11.dtd">

2 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en">

3 <head>

4 <title><?php // Print the page

title.

5 if (defined('TITLE')) { // Is the

title defined?

6 print TITLE;

7 } else { // The title is not

defined.

8 print 'Raise High the Roof

Beam! A J.D. Salinger Fan Club’;

9 }

10 2></title>

11 <meta http-equiv="content-type"

content="text/html; charset=utf-8" />

12 <link rel="stylesheet"

href="css/1.css" type="text/css"
media="screen,projection” />

13 </head>

14 <body>

15 <div id="wrapper">

16

17 <div id="header">

18 <p class="description">A J.D.

Salinger Fan Club</p>

19 <h1>Raise High

the Roof Beam!</h1>

20 <ul id="nav">

21 Books

</ax</1i>

22 Stories</1i>

23 <lixQuotes</1i>

24 Login

</ax</11>

25

Register</1i>

26

27 </div><l-- header -->

28

29 <div id="sidebar">

30 <h2>Favorite Quotes</h2>

31 <p class="news">I don't exactly

know what I mean by that,
but I mean it.
- The
Catcher in the Rye</p>

code continues on next page

PHP tags. Just be certain to leave a
space between the executed code—the
include()—and the tags.

6. Save the file as books.php.

To take advantage of the constant, you
now need to modify the header.html file.

To print out a constant:

1. Open header.html (Script 8.2) in your
text editor or IDE.

2. Delete the Raise High the Roof Beam! A
J.D. Salinger Fan Club text that appears
between the title tags (line 4).

Now that the page title will be determined
on a page-by-page basis, you don’t need
it to be hard-coded into the page.

3. Inthe place of the deleted text
(between the title tags), add the
following (Script 8.6):

<?php
if (defined('TITLE')) {
print TITLE;
} else {
print 'Raise High the Roof
Beam! A J.D. Salinger Fan
Club’;
}

>

To have PHP create the page title, you
need to begin by starting a section of
PHP code between the title tags. Then
you use a conditional to see if the TITLE
constant has been defined. If it has, print
its value as the page title. If TITLE hasn’t
been defined, print a default title.

4. Save the file as header.html.

continues on next page

Creating Web Applications 199

5. Upload books.php and header.html
to your PHP-enabled server. The new
PHP script, books.php, should go in
the same directory as index.php;
header.html should replace the previ-
ous version, in the same directory—
templates—as footer.html.

6. Run books.php in your Web browser @.

7. View index.php (the home page)in
your Web browser @.

8. If you want, add the constant definition
line to index.php to change its title.

The formal rules for naming constants
are exactly like those for variables except
for the omission of a dollar sign. Constant
names must begin with a letter; can contain
any combination of letters, numbers, and the
underscore; and are case-sensitive.

PHP runs with several predefined
constants. These include PHP_VERSION
(the version of PHP running) and PHP_0S
(the operating system of the server).

In Chapter 9, “Cookies and Sessions,”
you’ll learn about another constant, SID
(which stands for session ID).

An added benefit of using constants is
that they’re global in scope. This concept will
mean more to you after you read the section

“Understanding Variable Scope” in Chapter 10.

Not only can the value of a constant
never be changed, a constant can’t be deleted
(unset, technically). Also, unlike arrays, a con-
stant can only ever contain a single value, like
a string or a number.

Script 8.6 continued

32 <p class="news">I privately say
to you, old friend... please
accept from me this unpretentious
bouquet of early-blooming
parentheses: (((()))).
-
Raise High the Roof Beam,
Carpenters and Seymour: An
Introduction</p>

33 </div><!-- sidebar -->

34

35 <div id="content"»

36 <!-- BEGIN CHANGEABLE CONTENT. -->
37 <l-- Script 8.6 - header.html -->
@

Raise High the Roof Beam!

Books Stories Quotes Login Register

I.D. Salinger's Books

The Catcher in the Rye
Mire Stories
Franny ard Zooey

Raise High the Roof Beam, Carpenters and Seymour: A Introduction

0 The books page uses a PHP constant to create
its title.

Raise ITigh the Roof Beam!

Books Stories Quotes Login Reglister

Welcome to a I.D. Salinger I'an Club

@ Because the index page didn’t have a TITLE
constant defined in it, the default page title is used
(thanks to the conditional in Script 8.6).

200 Chapter 8

Working with the
Date and Time

PHP has a few functions for working with
the date and time, the most important

of which is date(). The only thing the
date() function does is return date and

how useful that can be! The basic usage of

the date() function is just

date('formatting');

A long list of possible options is available

for formatting, as indicated in Table 8.1

(the PHP manual lists a few more). These

parameters can also be combined—for

time information in a format based on the
arguments it’s fed, but you’d be surprised

example, date('l F j, Y') returns
Wednesday January 26, 2011.

TABLE 8.1 Date() Function Formatting

Character Meaning Example

Y Year as 4 digits 20m

y Year as 2 digits il

L Is it a leap year? 1 (for yes)

n Month as 1 or 2 digits 2

m Month as 2 digits 02

F Month February

M Month as 3 letters Feb

j Day of the month as 1 or 2 digits 8

d Day of the month as 2 digits 08

| (lowercase L) Day of the week Monday

D Day of the week as 3 letters Mon

w Day of the week as a single digit 0 (Sunday)

z Day of the year: 0 to 365 189

t Number of days in the month 31

S English ordinal suffix for a day, as 2 characters rd

g Hour; 12-hour format as 1 or 2 digits 6

G Hour; 24-hour format as 1 or 2 digits 18

h Hour; 12-hour format as 2 digits 06

H Hour; 24-hour format as 2 digits 18

i Minutes 45

S Seconds 18

u Microseconds 1234

a am or pm am

A AM or PM PM

U Seconds since the epoch 1048623008

e Timezone uUTC

| (capital i) Is it daylight savings? 1 (for yes)
Difference from GMT +0600

Creating Web Applications

201

The date() function can take a second
argument called a timestamp. A timestamp
is @ number representing how many
seconds have passed since midnight on
January 1, 1970—a moment referred to as
the epoch. The time() function returns
the timestamp for the current moment. The
mktime() function can return a timestamp
for a particular time and date:

mktime(hour, minute, second, month,
day, year);

So the code

$ts = mktime(22, 30, 0, 11, 5, 2011);

assigns to $ts the number of seconds
from the epoch to 12:30 on November 5,
2011. That number can then be fed into the
date() function like so:

date('D', $ts);

This returns Sat, which is the three-letter
format for that day of the week.

As of PHP 5.1, you should establish the
server’s time zone prior to calling any date-
or time-related function. To do so, use

date_default_timezone_set(timezone);

The timezone value is a string like
America/New_York or Pacific/Auckland.
There are too many to list here (Africa
alone has over 50), but see the PHP
manual for them all. If you don’t take this
step, you might see errors @).

To demonstrate the date() function, let’s
update the header file so that it shows the
current date and time in the sidebar @.

To use date():

1. Open header.html (Script 8.6) in your
text editor or IDE.

2. Before the closing sidebar </div» tag,
add the following (Script 8.7):

<p><?php

Warning: date() [function.date]: It is not safe to
rely on the system's timezone settings. You are
*required™ to use the date.timezone setting or the
date_default_timezone_set() function. In case you
used any of those methods and you are still
getting this warning, you most likely misspelled
the timezone identifier. We selected
'‘America/Mew_York® for 'EST/-5.0/no DST' instead
in
fUsers/larryullman /Sites /phpvgs4/templates/header.html
on line 38

0 As of PHP 5.1, notices will be generated when a
date or time function is used without the time zone
being set.

Favorite Quotes

| dan't exacthy know what | mean by that, but |
mean it.
- The Catcher in the fiye

I privately zay to you, old friend... pleaze
accept from me this unpretentious bouguet of
early-blooming parenthesas: ().

- Raise High the Foof Feam, Carpenters and’
Sepmour: An infrodction

1158 am Mand=y Derember 132

0 The Web site now displays
the date and time in the sidebar,
thanks to the date() function.

Script 8.7 The altered header.html file uses the
date() function to print the current date and time.

1 <IDOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.1//EN" "http://www.w3.0rg/TR/xhtml11/
DTD/xhtml11.dtd">

2 <html xmlns="http://www.w3.0rg/1999/
xhtml" xml:lang="en">

3 <head>

4 <title><?php // Print the page title.

5 if (defined('TITLE')) { // Is the title
defined?

6 print TITLE;

7 } else { // The title is not defined.

8 print 'Raise High the Roof Beam!

A 3.D. Salinger Fan Club';

9 }

10 H</title>

11 <meta http-equiv="content-type"

content="text/html; charset=utf-8" />

code continues on next page

202 Chapter 8

Script 8.7 continued

12 <link rel="stylesheet"
href="css/1.css" type="text/css"
media="screen,projection” />

13 </head>

14 <body>

15 <div id="wrapper">

16

17 <div id="header">

18 <p class="description">A J.D.

Salinger Fan Club</p>
19 <h1>Raise High
the Roof Beam!</h1>

20 <ul id="nav">

21
Books</a»</11>

22 Stories</1i>

23 <lixQuotes</1i>

24
Login</1i>

25
Register</1i>

26

27 </div><!-- header -->

28

29 <div id="sidebar"»

30 <h2>Favorite Quotes</h2>

31 <p class="news">I don't exactly

know what I mean by that,
but I mean it.
- The
Catcher in the Rye</p>
32 <p class="news">I privately say
to you, old friend... please
accept from me this unpretentious
bouquet of early-blooming
parentheses: (((()))).
-
Raise High the Roof Beam,
Carpenters and Seymour: An
Introduction</p>

33 <p><?php // Print the current
date and time...

34 // Set the timezone:

35 date_default_timezone_set
('America/New_York');

36

37 // Now print the date and time:

38 print date('g:i a 1 F j');

39 2</p>

40 </div><!-- sidebar --»

1

42 <div id="content">

43 <l-- BEGIN CHANGEABLE CONTENT. -->

44 <l-- Script 8.7 - header.html -->

The initial HTML paragraph tag will
wrap the date and time. Then open a
PHP section so that you can call the
date() function.

3. Establish the time zone:

date_default_timezone_set
('America/New_York');

Before calling date(), the time zone has
to be set. To find yours, see www.php.
net/timezones.

4. Use the date() function to print out the
current date and time:

print date('g:i a 1 F j');

Using the formatting parameters from
Table 81, the date() function will return a
value like 4:15 pm Tuesday February 22.
This value will immediately be printed.

5. Close the PHP section and finish the
HTML code:

2</p>

6. Save the file as header.html, place it in
the templates directory of your PHP-
enabled server, and test it in your Web
browser

@D Because PHP is a server-side technology,
these functions reflect the date and time on
the server. To get the time on the client (in
other words, on the computer where the Web
browser viewing the page is located), you
must use JavaScript.

The server’s time zone can also be set
in the PHP configuration file (see Appendix A,
“Installation and Configuration”). Establishing
the time zone there is generally a better idea
than doing so on a script-by-script basis.

Added to PHP 5.3 are new ways to
create and manipulate dates and times using
the DateTime class. While useful, this new
tool requires familiarity with object-oriented
programming, therefore making it beyond the
scope of this beginner’s book.

Creating Web Applications 203

www.php.net/timezones
www.php.net/timezones

Handling HTML Forms
with PHP, Revisited

All the examples in this book so far have
used two separate scripts for handling HTML
forms: one that displayed the form and
another that received and processed the
form’s data. There’s certainly nothing wrong
with this method, but there are advantages
to coding the entire process in one script. To
make a page both display and handle a form,
use a conditional €):

if (/* form has been submitted */) {
// Handle the form.

} else {
/! Display the form.

}

There are many ways to determine if a
form has been submitted. One option is to
check whether any of the form’s variables
are set:

if (isset($_POST['something'])) { ..

However, if the user submitted the form
without completing it, that variable may not
be set (depending on the corresponding
form element type). A more reliable
solution I've used in the pastis to add a
hidden input to a form so that it can be
checked:

<input type="hidden"
name="submitted" value="true" />

Again, the only purpose of this hidden
input is to reliably indicate that the form
has been submitted, even if the user did
nothing to complete the form. To check for
that, the handling PHP code would use this
conditional:

if (isset($_POST['submitted'])) { ..

<?php
include('template/header.html');

if (/* form has been submitted */) {

valtdation

[} else {]
=
— form

}
include('template/footer.html');
?>

SGVLPt

0 This flowchart represents how the same PHP
script can both display and handle an HTML form.

204 Chapter 8

Another way of checking for a form’s
submission is to examine how the page
was accessed. When you have a form
that will be submitted back to the same
page, two different types of requests

will be made of that script @. The first
request, which loads the form, will be a
GET request. This is the standard request
made of most Web pages. When the form
is submitted, and its action attribute points
to the same page, a second request of

the script will be made, this time a POST
request (assuming the form uses the POST
method). With this in mind, you can test
for a form’s submission by checking the
request type, found in the $_SERVER array:

if ($_SERVER['REQUEST METHOD'] ==
'POST') { ..

As an example of this, you'll create the
basics of a login form.

<?php

include('template/header.html');

if (/* form has been submitted */) {

valtdation <—

)| @

POST
subwmisston

form request

[} else {
GET request =
@ []
}

include('template/footer.html');

2>

Script

0 When the same PHP script both displays and handles an HTML form, the script
will be requested using two different methods.

Creating Web Applications 205

To use one page to display
and handle a form:

1. Begin a new PHP document in your text
editor or IDE, to be named login.php
(Script 8.8):

<?php // Script 8.8 - login.php
2. Define the page title as a constant and
include the header file:
define('TITLE', 'Login');
include('templates/header.html');
Using the constant system developed

earlier in the chapter, give this page its
own unique page title.

3. Add some introductory text:

print '<h2>Login Form</h2>
<p>Users who are logged in can
take advantage of certain
features like this, that, and
the other thing.</p>';

This text, which appears outside of the
main conditional, will always show in
the Web browser, whether the form is
being displayed or has been submitted.
Because the core of this script revolves
around a PHP conditional, it’s arguably
clearer to print out HTML from PHP
rather than exit out of the PHP code as
you did in the previous two examples
(index.php and books.php).

4. Begin the conditional to check whether
the form has been submitted:

if ($_SERVER['REQUEST METHOD'] ==
'POST') {

To test whether the form has been
submitted, check whether $_SERVER
['REQUEST_METHOD'] equals POST
(case-sensitive).

Script 8.8 The login page serves two purposes: It
displays the login form and handles its submission.

1
2

S

O o ~J o wunm

11
12
13

14
15
16

17
18

19
20

21
22
23
24

25
26
27
28
29
30

31

<?php // Script 8.8 - login.php
/* This page lets people log into the
site (in theory). */

/1 Set the page title and include the
header file:

define('TITLE', 'Login');
include('templates/header.html');

// Print some introductory text:

print '<h2>Login Form</h2>
<p>Users who are logged in can take
advantage of certain features like
this, that, and the other thing.</p>';

// Check if the form has been submitted:
if ($_SERVER['REQUEST_METHOD'] ==
'POST') {

// Handle the form:
if (('empty($_POST['email'])) &&
(lempty($_POST['password']))) {

if ((strtolower($_POST
['email']) == 'me@example.com')
&8& ($_POST['password'] ==
'testpass')) { // Correct!

print '<p>You are logged
inl
Now you can blah,
blah, blah...</p>';

} else { // Incorrect!

print '<p>The submitted
email address and password
do not match those on
filel
Go back and try
again.</p>';

}
} else { // Forgot a field.

print '<p>Please make sure you
enter both an email address
and a password!
Go back
and try again.</p>';

code continues on next page

206 Chapter 8

Script 8.8 continued

32 }

33

34 } else { // Display the form.
35

36 print '<form action="login.php"
method="post">
37 <p>Email Address: <input

type="text" name="email"
size="20" /></p>

38 <p>Password: <input
type="password" name="password"
size="20" /></p>

39 <p><input type="submit" name=
"submit" value="Log In!" /></p>

40 </form>';

41

42 }

43

44 include('templates/footer.html');
// Need the footer.
45 >

5. Create a nested pair of conditionals to
process the form data:

if ((empty($_POST['email'])) &&
(lempty($_POST['password']))) {
if ((strtolower($ _POST['email'])
== 'me@example.com') &&
($_POST['password'] ==
"testpass')) {
print '<p>You are logged
inl
Now you can blah,
blah, blah...</p>';
} else { // Incorrect!
print '<p>The submitted email
address and password do not
match those on filel<bxr />
Go back and try again.</p>';
}
} else {
print '<p>Please make sure you
enter both an email address
and a password!
Go back
and try again.</p>';

}

These conditionals handle the form data.
The first conditional checks that both the
email address and password variables
have values. If they don’t, a message is
displayed (Please make sure...). Within
that first conditional, another conditional
checks whether the email address

is equal to me@example.com and the
password is equal to testpass. If so,
let’s say the user is logged in (it would
be too advanced at this juncture to
store and retrieve user information to
create a real login system). Otherwise,

a message indicates that the wrong
values were entered.

continues on next page

Creating Web Applications 207

Be certain to use the equals operator (== L()gll'l FOITI'I

here and not the assignment operator

(=) in this conditional, which is a common Users who are [0gged In can take advantage of certain features like this,
mistake. Also, in case the user enters thal, and the other thing.

their address as Me@example.com, or
any other capitalized permutation, the
strtolower() function is first applied
to the email address, prior to checking

for equality. Log In!

Froail Address

Password.

6. Complete the main conditional: G This simple login page takes an email address

} else { // Display the form. and a password.

print '<form action="login.php"
method="post">

<p>Email Address: <input
type="text" name="email"
size="20" /></p>

<p>Password: <input type=
"password" name="password"
size="20" /></p>

<p><input type="submit" name=
"submit" value="Log Inl!" /></p>

</formy';

}

This concludes the main conditional,
which checks whether the form has
been submitted. If it hasn’t been, then
the form is displayed. The form itself is
very simple @.

To clarify a point of possible confusion,
even though the form’s method attribute
has a value of post (all lowercase), to
check for the form’s submission, the
request method value is still POST

(all uppercase).

208 Chapter 8

Login Form

Users who are logged in can take advantage of certain teatures like this,

that, and the nther thing

o are Ingged inl

Mowe you can blah, blah, blah..

0 Upon successfully logging in, the user sees
this message.

[L.ogin Form

Users who are logged in can take advantage of certain features like this,

that, and the other thing.

Please make sure you enter both an email address and a password!

Co back and try again.

G Failure to submit either an email address or
a password results in this message.

Login Form

that, and the other thing

The submitted ermail address and password do not match those on file!

Go back and try again

Users who are logged in can take advantage of certain features like this,

o If either the email address or the password
doesn’t match that in the script, the user sees this
error message.

7. Require the footer file and complete the
PHP page:

include('templates/footer.html");
>

8. Save the file as login.php, place it in
the same directory as index.php, and
test it in your Web browser @, @, and @.

In the real world, you would add some
CSS formatting to the error messages so that
they stand out. The next section of the chapter
will include this feature.

This trick of checking for the presence
of a hidden input can be confusing. It works
because the same script—login.php—will be
accessed twice by the user. The first time the
form will not have been submitted, so a condi-
tional checking if $_POST['submitted'] is set
will be FALSE and the form will be displayed.
Then the page will be accessed again after the
user clicks submit, at which point the condi-
tional becomes TRUE.

@D If you want a page to handle a form
and then immediately display the form again,
use this:

if ($_SERVER['REQUEST METHOD'] ==

'POST") {
// Handle the form.
}

/! Display the form.

Creating Web Applications 209

Making Forms Sticky

A sticky form remembers values entered into
it. A common example is a search engine,
which often displays your terms in the
search box, even when showing the results
of the search. You might also want to use
sticky forms on occasions where the user
failed to complete a form accurately and
therefore must resubmit it €.

From a technological standpoint, sticky forms
work by having their form element values
predetermined. You can make this happen
by setting the value attribute of text inputs:

<input type="text" name="first_name"
value="Stephanie" />

To have PHP preset that value, print
the appropriate variable between the
quotation marks:

<input type="text" name="first_name"
value="<?php print $_POST
['first_name']; 25" />

The first time the form is run, the PHP code
prints nothing (because the variable has no
value). If the form is displayed again after
submission, values that the user originally
entered in the form input will be displayed
there automatically. That’s the basic idea,
but a more professional implementation
would address two things...

Registration Form

Register 50 that you can take advantage of certain features like this, that,

and the other thing

Please enter your last name!
Hlease enter ynur proail address!
lease enter a password!

Please try again!

First Mame: |Larmry

Last Mame

o Creating sticky forms makes it easier for users to
correct omissions in incomplete form submissions.

"o fsip>

<prFirst Name: <input type="text"” name="first name" size="20" wvalue="<br i>
<h>Notice</h>: Undefined index: first_nsme in /Users/ larryullman/3ites/phpvgs4/register. php

0 The HTML source of the page shows the PHP error caused by referring to a variable that does not exist.

210 Chapter 8

Registration Form

Reqister so that vou can take advantage of certain features like this, that,

and the other thing.
First Mame:

Last hame:

Ermail Audress
Password:

Confirm Password:

G The registration form as the user first sees it.

First, it's best not to refer to variables that
don’t exist. Doing so creates PHP warnings,
and with the PHP code buried in a form
element’s attribute, the warning itself will
only be fully visible in the HTML source
code @. To avoid that, check that the
variable is set before printing it:

<input type="text" name="first_name"
value="<?php if (isset($_POST
['first_name']) { print $_POST
['first_name']; } " />

Second, certain characters that could be
in a submitted value will cause problems
if printed as a form element’s value.

To prevent such problems, apply the
htmlspecialchars() function (discussed
in Chapter 5, “Using Strings”). With this in
mind, a longer but better version of this
code is as follows:

<input type="text" name="first_name"
value="<?php if (isset($_POST
['first_name']) { print
htmlspecialchars($_POST['first_
name']); } »" />

To demonstrate, you'll create the shell of a
registration form @.

Creating Web Applications 211

To make a sticky form: Script 8.9 The registration form uses a so-called
sticky feature so that it recalls the values previously

1. Create a new PHP script in your text entered into it
editor or IDE, to be named register. 1 <ohp // Script 8.9 - ster.oh
. . ?php cript 8.9 - register.php
php (Script 8.9). 2 /* This page lets people register for
<?php // Script 8.9 - register.php the site (in theory). */

2. Set the page title and include the HTML // Set the page title and include the
header: header file:

S

define('TITLE', 'Register'); 5 define("TITLE, Register');
. \ 2 ’ , 6 include('templates/header.html');
include('templates/header.html'); 7
3. Add some introductory text and define 8 // Print some introductory text:
a CSS class: 9 print '<h2>Registration Form</h2>
’ 10 <p>Register so that you can take
print '<h2>Registration Form</h2> advantage of certain features like
<p>Register so that you can this, that, and the other thing.</p>';
take advantage of certain u

12 // Add the CSS:
13 print '<style type="text/css"
media="screen">

features like this, that, and
the other thing.</p>';

print '<style type="text/css" 14 .error { color: red; }
media="screen"> 15 </style>';
.exror { color: red; } 16
</styles'; 17 // Check if the form has been submitted:
? 18 if (§ SERVER['REQUEST METHOD'] == 'POST') {
So that the error messages, generated 19
by improperly completing the registration 20 $problem = FALSE; // No problems
form, stand out, a CSS class is defined so far.
21

that colors the applicable text in red.

. . 22 // Check for each value...
Although CSS is normally defined in the 23 if (empty($ POST["first _name'])) {
page’s head, you can put it anywhere. 24 $problem = TRUE;
4. Check whether the form has been % print “¢p class="error">Please
. . enter your first namel</p>';
submitted: 2% }
if ($_SERVER['REQUEST METHOD'] == 27
'POST') { 28 if (empty($_POST['last_name'])) {
29 $problem = TRUE;
Like the login page, this one script both 30 print '<p class="error">Please
displays and handles the registration enter your last namel</p>';
form. To check if the form has been 31 }
i ; 32
subm!tted,.the same code previously 3 £ (empty(s_POST'email'])) {
explained is used here. 31 $problem = TRUE;
35 print '<p class="error">Please
enter your email address!</p>';
36 }
37
38 if (empty($ POST['passwordi'])) {

code continues on next page

212 Chapter 8

Script 8.9 continued

39
40

4
42
23

44
45

46
47
48

49
50
51

52
53
54
55
56
57
58

59
60
61
62
63
64
65
66

67
68

69
70

$problem = TRUE;
print '<p class="error">Please
enter a password!</p>';

}

if ($_POST['password1'] != $ POST
['password2']) {
$problem = TRUE;
print '<p class="error">Your
password did not match your
confirmed password!</p>';

}

if (!$problem) { // If there weren't
any problems...

// Print a message:

print '<p>You are now registered!

0kay, you are not really
registered but...</p>';

// Clear the posted values:
$ POST = array();

} else { // Forgot a field.

print '<p class="error">Please try
againl«/p>';

}
} // End of handle form IF.

// Create the form:

>

<form action="register.php"
method="post">

<p>First Name: <input type="text"
name="first_name" size="20"
value="<?php if (isset($_POST
['first_name'])) { print
htmlspecialchars($_POST['first_
name']); } " /></p>

<p>Last Name: <input type="text"
name="last_name" size="20"
value="<?php if (isset($_POST
['last_name'])) { print
htmlspecialchars($_POST['last_
name']); } " /></p>

code continues on next page

5. Create a flag variable:

$problem = FALSE;

The $problem variable will be used to
indicate whether a problem occurred.
Specifically, you want to make sure that
every form input has been filled out
before you formally register the user.
Initially, this variable is set to FALSE,
because no problems have occurred.

This is the same approach used in
Chapter 6, “Control Structures.”

. Check that a first name was entered:

if (empty($_POST['first_name'])) {
$problem = TRUE;
print '<p class="error">Please
enter your first namel</p>';

}

As a simple test to determine whether
the user has entered a first name value,
check that the variable isn’t empty. (This
technique was first discussed in Chapter
6.) If the variable is empty, then indicate
a problem by setting that variable to
TRUE and print an error message. The
error message has a class type of error,
so that the CSS formatting is applied.

Repeat the validation for the last name
and email address:

if (empty($_POST['last_name'])) {
$problem = TRUE;
print '<p class="error">Please
enter your last namel</p>';
}
if (empty($_POST['email'])) {
$problem = TRUE;
print '<p class="error">Please
enter your email address!</p>';

}

Both of these checks are variations on
the username validation routine.

continues on next page

Creating Web Applications 213

8. Validate the passwords:

if (empty($_POST['password1'])) {
$problem = TRUE;
print '<p class="error">Please
enter a password!</p>';
}
if ($_POST['password1i'] != $ POST
['password2']) {
$problem = TRUE;
print '<p class="error">Your
password did not match your
confirmed password!</p>';

}

The password validation requires two
conditionals. The first checks whether
the $_POST['password1'] variable is
empty. The second checks whether
the $_POST['password1'] variable isn’t
equal to the $_POST['password2']
variable. You don’t need to see if

$_POST['password2'] is empty because

if it is and $_POST['password1'] isnt,
the second conditional will catch that
problem. If $_POST['passwordi1'] and

$_POST['password2'] are both empty, the

first conditional will catch the mistake.
9. Check whether a problem occurred:
if (!$problem) {
print '<p>You are now
registered!
Okay,

you are not really registered

but...</p>';
$ POST = array();

If there were no problems, the
$problem variable is still FALSE, and
the initial condition here is TRUE (the
condition is that $problem has a value
of FALSE). In that case, the registration
process would take place. The formal
registration process, where the data is

stored in a file or database, has not yet
been developed, so a simple message

appears in its stead here.

Script 8.9 continued

71
72

73
74

75

76
77

78
79
80
81

<p>Email Address: <input
type="text" name="email"
size="20" value="<?php if
(isset($_POST['email'])) { print
htmlspecialchars($_POST['email']);
} »" I5</p>

<p>Password: <input
type="password" name="passwordi"
size="20" value="<?php if
(isset($_POST['passwordi']))

{ print htmlspecialchars($ POST
['passwordi']); } ?>" /></p>
<p>Confirm Password: <input
type="password" name="password2"
size="20" value="<?php if
(isset($_POST['password2']))

{ print htmlspecialchars($ POST
['password2']); } ?>" /></p>

<p><input type="submit" name="submit"
value="Register!" /></p>

</formy

<?php include('templates/footer.html');
// Need the footer. ?>

214 Chapter 8

10.

1.

12.

Next, the $_POST variable is assigned the
value of array(). This line has the effect
of wiping out the contents of the $_POST
variable (i.e., resetting it as an empty
array). This step is taken only upon a
successful (theoretical) registration so
that the values are not redisplayed in
the registration form (e.g., see Step 12).

Complete the conditionals:

} else { // Forgot a field.
print '<p class="error">
Please try againl</p>';
}
} 7/ End of handle form IF.

The else clause applies if a problem
occurred, in which case the user is
asked to complete the form again.

Begin the HTML form:

[
<form action="register.php”
method="post">

Unlike the login example, this page always
displays the form. Therefore, the form

isn’t part of any conditional. Also, because
there’s a lot of HTML to be generated, it'll
be easier to leave the PHP section of the
page and just output the HTML directly.

Create the sticky first name input:

<p>First Name: <input type="text"
name="first_name" size="20"
value="<?php if (isset($_POST
['first_name'])) { print
htmlspecialchars($_POST
['first_name']); } ?>" /></p>

To make the first name input sticky, preset
its value attribute by printing out the
$_POST['first_name'] variable, but only
if it's set. The conditional is therefore put
within PHP tags within the HTMLs value
section of the form element. As already
mentioned, the htmlspecialchars()
function is used to handle any potentially
problematic characters.

Note that if the user filled out the form
properly, the entire $_POST array will
have been reset, making this PHP
conditional false.

13. Repeat the process for the last name
and email address:

<p>Last Name: <input type="text"
name="last_name" size="20"
value="<?php if (isset($_POST
['last_name'])) { print
htmlspecialchars($_POST
['last_name']); } 2>" /></p>

<p>Email Address: <input
type="text" name="email"
size="20" value="<?php if
(isset($_POST['email'])) { print
htmlspecialchars($_POST
['email']); } 2>" /></p>

These are variations on Step 12, switching
the variable names as appropriate.

14. Add the rest of the form:

<p>Password: <input type=
"password” name="passwordi1"
size="20" value="<?php if
(isset($_POST['passwordi1']))
{ print htmlspecialchars
($_POST['password1']); } 2>" /></p>
<p>Confirm Passwoxrd: <input
type="password" name="password2"
size="20" value="<?php if
(isset($_POST['password2']))
{ print htmlspecialchars
($_POST['password2']); }
»" Is</p>
<p><input type="submit" name=
"submit" value="Register!" /></p>
</foxrm>

It used to be the case that you couldn’t
preset a value for a password input,
but some browsers now support this
feature. Then there is the submit button
and the closing form tag.

continues on next page

Creating Web Applications 215

15. Complete the PHP page:

<?php include('templates/
footer.html"); 2>

The last step is to include the HTML footer.

16.Save the file as register.php, place it
in the proper directory on your PHP-
enabled server, and test it in your Web
browser @ and @.

According to (X)HTML rules, you must
quote all attributes in form inputs. Specifically,
you should use double quotation marks. If you
don’t quote your values, any spaces in them
mark the end of the value (for example, Larry
Ullman will display as just Larry in the form
input). Although quoting attributes will not be
a requirement of HTMLS5, | still recommend
doing so.

To preset the status of radio buttons
or check boxes as checked, add the code
checked="checked" to the input tag:

<input type="checkbox" name=
"interests[]" value="Skiing"
checked="checked" />

Of course, you’d need to use a PHP condi-
tional to see if that text should be added to
the element’s definition.

To preselect a pull-down menu, use
select-ed="selected":

<select name="year">

<option value="2011">2011</option>

<option value="2012" select-ed=
"selected">2012</option>

</select>

Again, you’d need to use a PHP conditional
to see if that text should be added to the
element’s definition.

To preset the value of a text area, place
the value between the textarea tags:

<textarea name="comments" rows="10"
cols="50">preset value</textarea>

Registration Form

Pegister so that you can take advantage of certain features like this, that,

and the other thing

Hiease enter your 1ast name

Flease enter your email aduress!

Your password did not match your confirmed password
Please try again!

First Marme: |Lamy

AST Mame

Ermail Address. |mel@example.com

Password

Confirm Password: |[sesessses

0 The registration form indicates any problems
and retains the form values.

Raise High the Roof Beam!

Favorite d

dent exaeiy
ke advanage of cermain feasures (ke this, Thar = The Catcher i

G The registration form after the user successfully
fills it out.

216 Chapter 8

Email Address

me@example.comyou@example edu, whomever@example_net

o A user could easily attempt to send emails to
multiple recipients through a form like this.

Sending Email

Sending email using PHP is theoretically
simple, merely requiring only PHP’s mail()
function. This function uses the server’s
email application (such as sendmail on
Unix or Mac OS X) or an SMTP (Simple Mail
Transfer Protocol) server to send out the
messages. The basic usage of this function
is as follows:

mail(to, subject, body);

The first argument is the email address
(or addresses, separated by commas)

to which the email should be sent.

The second argument establishes the
message’s subject line, and the third
argument creates the message’s content.

This function can take another argument
through which you can add more details
(additional headers) to the email, including
a From address, email priority, and carbon-
copy addresses:

mail('someone@example.com’, 'Test
Email', 'This is a test email’,
'From: ‘email@example.com');

Although doing so is easy in theory, using
this function in real-world code can be far
more complex. For starters, setting up your
own computer to send out email can be

a challenge (see the sidebar “Configuring
Your Server to Send Email”).

Second, you should take steps to prevent
malicious people from using your forms
to send out spam. In our next example, an
email will be sent to the provided email
address. If a conniving user supplies
multiple addresses @), an email will be
sent to each one. There are many ways of
safeguarding against this. For the level of
this book, one simple option is to confirm

continues on next page

Creating Web Applications 217

that there’s only a single @ present in the
provided address (i.e., it’'s only one email
address). You can count how many times
a substring is present in a string using the
aptly named substr_count() function:

if (substr_count($_POST['email'],
'e') == 1) {.

With those caveats, let’s add a mail()

function call to the registration page so

that you get a sense of how the function

might be used.

To send email with PHP:

1. Open register.php (Script 8.9) in your
text editor or IDE.

2. Change the email validation so that it
also checks for a single “at” symbol
(Script 8.10):

if (empty($_POST['email'l) ||
(substr_count($_POST['email'],
‘e') 1=1)) {
Now the email address validation fails
if the value is empty or if it doesn’t
contain exactly one @. This doesn’t
constitute thorough validation—far from
it—but the emails address becomes less
of a security risk to use. See the tips for
ways to improve upon this.

3. After the registration message (line 51),
add the following:

$body = "Thank you for registering
with the J.D. Salinger fan
club! Your password is
'{$_POST['password1']}'.";
mail($_POST['email'], 'Registration
Confirmation', $body, 'From:
admin@example.com');

continues on page 220

Script 8.10 In PHP, you can send email by calling
the mail() function.

1 <?php // Script 8.10 - register.php #2
2 /* This page lets people register for
the site (in theory). */

3

4 // Set the page title and include the
header file:

5 define('TITLE', 'Register');

6 include('templates/header.html');

7

8 // Print some introductory text:

9 print '<h2>Registration Form</h2>

10 <p>Register so that you can take
advantage of certain features like
this, that, and the other thing.</p>';

11

12 // Add the CSS:

13 print «style type="text/css" media="screen">

14 .error { color: red; }
15 </styled';
16

17 // Check if the form has been submitted:
18 if ($ SERVER['REQUEST METHOD'] == 'POST")

{

19

20 $problem = FALSE; // No problems so far.

21

22 // Check for each value...

23 if (empty($ POST['first_name'])) {

24 $problem = TRUE;

25 print '<p class="error">Please
enter your first namel</p>';

26 }

27

28 if (empty($ POST['last_name'])) {

29 $problem = TRUE;

30 print '<p class="error">Please
enter your last namel</p>';

31 }

32

33 if (empty($_POST['email']) ||

(substr_count($_POST['email'],
‘') 1=1)) {

34 $problem = TRUE;

35 print '<p class="error">Please
enter your email address!</p>';

36 }

37

38 if (empty($ POST['passwordi'])) {

39 $problem = TRUE;

code continues on next page

218 Chapter 8

Script 8.10 continued

40
4
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74

75
76

77
78

79

80
81
82
83
84
85

print '<p class="error">Please enter a password!</p>';
}
if ($ POST['passwordi'] != $ POST['password2']) {
$problem = TRUE;
print '<p class="error">Your password did not match your confirmed password!</p>';

}
if (!$problem) { // If there weren't any problems...

// Print a message:
print '<p>You are now registered!
Okay, you are not really registered but...</p>';

// Send the email:

$body = "Thank you for registering with the J.D. Salinger fan club! Your password

is '{$_POST['password1']}'.";

mail($_POST['email'], 'Registration Confirmation', $body, 'From: admin@example.com');

// Clear the posted values:
$ POST = array();

} else { // Forgot a field.
print '<p class="error">Please try again!</p>';
}
} // End of handle form IF.
// Create the form:

o]
<form action="register.php" method="post">

<p>First Name: <input type="text" name="first name" size="20" value="<?php if (isset($ POST

['first name'])) { print htmlspecialchars($ POST['first name']); } >" /></p>

<p>Last Name: <input type="text" name="last name" size="20" value="<?php if (isset($ POST
['last_name'])) { print htmlspecialchars($ POST['last_name']); } 2>" /></p>

<p>Email Address: <input type="text" name="email" size="20" value="<?php if (isset($ POST
['email'])) { print htmlspecialchars($ POST['email']); } 2" /></p>

<p>Password: <input type="password" name="passwordl" size="20" value="<?php if (isset($ _POST

['passwordi'])) { print htmlspecialchars($_POST['password1']); } 2>" /></p>

<p>Confirm Password: <input type="password" name="password2" size="20" value="<?php if
(isset($_POST['password2'])) { print htmlspecialchars($ POST['password2']); } 2" /></p>
<p><input type="submit" name="submit" value="Register!" /></p>

</formy>

<?php include('templates/footer.html'); // Need the footer. ?>

Creating Web Applications

219

Sometimes the easiest way to use

this function is to establish the body
as a variable and then feed it into

the mail() function (as opposed to
writing the email’s body within the
function call). The message itself is
sent to the address with which the
user registered, with the subject
Registration Confirmation, from the
address admin@example.com. If you’ll
be running this script on a live server,
you should use an actual email address
for that site as the from value.

4. Save the file, place it in the proper
directory of your PHP- and email-
enabled server, and test it in your
Web browser @.

5. Upon successfully completing the form,
check your email for the message @.

The “Review and Pursue” section at the
end of this chapter points you in the direction
of an excellent tool for validating email
addresses, provided you’re using version 5.2
or later of PHP.

In my PHP 6 and MySQL 5 for Dynamic
Web Sites: Visual QuickPro Guide (Peachpit
Press, 2007) and online in my forums (www.
LarryUliman.com/forum/), | discuss other
ways to secure the emails that get sent by

a PHP script.

If you have problems receiving the PHP-
sent email, start by confirming that the mail
server works on its own without involving
PHP. Then make sure you’re using a valid from
address. Finally, try using different recipient
addresses and keep an eye on your spam
folder to see that the message isn’t getting
put there (if applicable).

Registration I'orm

Register <o that you can take advantage of certain features like this, that,

and the other thing.

Please enter wour ermail address!
Please try again!

First Marne :Larry

Last Marne: |Uliman

Cmail Address: | me@example.com,you@example eduwhor

0 If the user provides multiple email addresses
they’ll see an error message.

’

M O O [| Registration Confirmation — Inbox —)

[rom: admin@example com
Subject Registration Confimation
Dafte: December 13, 20